Updated on 2024/09/20

写真a

 
TSUGAWA Kotaro
 
Organization
Faculty of Science and Engineering Professor
Other responsible organization
Mathematics Course of Graduate School of Science and Engineering, Master's Program
Mathematics Course of Graduate School of Science and Engineering, Doctoral Program
Contact information
The inquiry by e-mail is 《here
External link

Degree

  • 博士(数理科学) ( 東京大学 )

  • 修士(数理科学) ( 東京大学 )

Education

  • 2003.8
     

    Tohoku University   Graduate School, Division of Natural Science   others   others

  • 2001.3
     

    The University of Tokyo   Graduate School, Division of Mathematical Sciences   doctor course   completed

  • 1998.3
     

    The University of Tokyo   Graduate School, Division of Mathematical Sciences   master course   completed

  • 1996.3
     

    The University of Tokyo   graduated

Research History

  • 2018.4 -  

    中央大学理工学部教授

  • 2007.4 - 2018.3

    名古屋大学大学院多元数理科学研究科・准教授

  • 2015.4 - 2016.3

    京都大学大学院理学研究科非常勤講師

  • 2015.8    

    清華大学(中国)集中講義講師

  • 2011.5 - 2012.3

    トロント大学客員研究員(日本学術振興会特定国派遣研究者)

  • 2005.4 - 2007.3

    名古屋大学大学院多元数理科学研究科・助教授

  • 2005.3    

    マックスプランク数学研究所(ライプチヒ)ポストドクター

  • 2004.9 - 2005.3

    スイス連邦工科大学ポストドクター

  • 2003.9 - 2004.9

    フランス高等科学研究所ポストドクター

  • 2003.4 - 2003.9

    東北学院大学工学部環境土木工学科非常勤講師

▼display all

Professional Memberships

  • 日本数学会

Research Interests

  • partial differential equations

Research Areas

  • Natural Science / Basic analysis  / 解析学基礎

Papers

  • Cancellation properties and unconditional well-posedness for the fifth order KdV type equations with periodic boundary condition Reviewed

    Takamori Kato, Kotaro Tsugawa

    Partial Differential Equations and Applications   5 ( 3 )   2024.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1007/s42985-024-00289-9

    researchmap

    Other Link: https://link.springer.com/article/10.1007/s42985-024-00289-9/fulltext.html

  • Well-posedness and parabolic smoothing effect for higher order Schrodinger type equations with constant coefficients Reviewed

    Tomoyuki TANAKA, Kotaro TSUGAWA

    Osaka J. Math.   59   465 - 480   2022.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    researchmap

  • SCATTERING AND WELL-POSEDNESS FOR THE ZAKHAROV SYSTEM AT A CRITICAL SPACE IN FOUR AND MORE SPATIAL DIMENSIONS Reviewed

    Isao Kato, Kotaro Tsugawa

    DIFFERENTIAL AND INTEGRAL EQUATIONS   30 ( 9-10 )   763 - 794   2017.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:KHAYYAM PUBL CO INC  

    We study the Cauchy problem for the Zakharov system in spatial dimension d >= 4 with initial datum (u(0), n(0), partial derivative(t)n(0)) is an element of H-k(R-d) x (H) over dot(l) (R-d) x (H) over dot(l-1)(R-d). According to Ginibre, Tsutsumi and Velo ([9]), the critical exponent of (k, l) is ((d - 3)/2, (d - 4)/2). We prove the small data global well-posedness and the scattering at the critical space. It seems difficult to get the crucial bilinear estimate only by applying the U-2, V-2 type spaces introduced by Koch and Tataru ([23], [24]). To avoid the difficulty, we use an intersection space of V-2 type space and the space-time Lebesgue space E := (LtLx2d/(d-2))-L-2, which is related to the endpoint Strichartz estimate.

    Web of Science

    researchmap

  • Local well-posedness and parabolic smoothing effect of fifth order dispersive equations on the torus Reviewed

    K. Tsugawa

    RIMS Kokyuroku Bessatsu   B60   177 - 193   2016.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Res. Inst. Math. Sci. (RIMS)  

    researchmap

  • LOCAL WELL-POSEDNESS OF THE KDV EQUATION WITH QUASI-PERIODIC INITIAL DATA Reviewed

    Kotaro Tsugawa

    SIAM JOURNAL ON MATHEMATICAL ANALYSIS   44 ( 5 )   3412 - 3428   2012

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SIAM PUBLICATIONS  

    We prove the local well-posedness for the Cauchy problem of the Korteweg-de Vries equation in a quasi-periodic function space. The function space contains functions such that f = f(1) + f(2) + ... + f(N) where f(j) is in the Sobolev space of order s > -1/2N of 2 pi alpha(-1)(j) periodic functions. Note that f is not a periodic function when the ratio of periods alpha(i)/alpha(j) is irrational. The main tool of the proof is the Fourier restriction norm method introduced by Bourgain. We also prove an ill-posedness result in the sense that the flow map (if it exists) is not C-2, which is related to the Diophantine problem.

    DOI: 10.1137/110849973

    Web of Science

    researchmap

  • LOCAL WELL-POSEDNESS FOR QUADRATIC NONLINEAR SCHRODINGER EQUATIONS AND THE "GOOD" BOUSSINESQ EQUATION Reviewed

    Nobu Kishimoto, Kotaro Tsugawa

    DIFFERENTIAL AND INTEGRAL EQUATIONS   23 ( 5-6 )   463 - 493   2010.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:KHAYYAM PUBL CO INC  

    The Cauchy problem for 1-D nonlinear Schrodinger equations with quadratic nonlinearities are considered in the spaces H(s,a) defined by parallel to f parallel to H(s,a) = parallel to(1 + vertical bar xi vertical bar(s-a) vertical bar xi vertical bar(a) (f) over cap parallel to(L2), and sharp local well-posedness and ill-posedness results are obtained in these spaces for nonlinearities including the term u (u) over bar In particular, when a = 0 the previous well-posedness result in H(s), s > -1/4, given by Kenig, Ponce and Vega (1996), is improved to s >= -1/4. This also extends the result in H(s,a) by Otani (2004). The proof is based on an iteration argument similar to that of Kenig, Ponce and Vega, with a modification of the spaces of the Fourier restriction norm. Our result is also applied to the "good" Boussinesq equation and yields local well-posedness in H(s) x H(s-2) with s > -1/2, which is an improvement of the previous result given by Farah (2009).

    Web of Science

    researchmap

  • Well-posedness for nonlinear Dirac equations in one dimension Reviewed

    Shuji Machihara, Kenji Nakanishi, Kotaro Tsugawa

    Kyoto Journal of Mathematics   50 ( 2 )   403 - 451   2010

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Kyoto University  

    We completely determine the range of Sobolev regularity for the Dirac-Klein-Gordon system, the quadratic nonlinear Dirac equations, and the wave-map equation to be well posed locally in time on the real line. For the Dirac-Klein-Gordon system, we can continue those local solutions in nonnegative Sobolev spaces by the charge conservation. In particular, we obtain global well-posedness in the space where both the spinor and scalar fields are only in L2 (R). Outside the range for well-posedness, we show either that some solutions exit the Sobolev space instantly or that the solution map is not twice differentiable at zero. © 2010 by Kyoto University.

    DOI: 10.1215/0023608X-2009-018

    Scopus

    researchmap

  • Well-posedness and weak rotation limit for the Ostrovsky equation Reviewed

    Kotaro Tsugawa

    JOURNAL OF DIFFERENTIAL EQUATIONS   247 ( 12 )   3163 - 3180   2009.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    We consider the Cauchy problem of the Ostrovsky equation. We first prove the time local well-posedness in the anisotropic Sobolev space H(s,a) with s > -a/2 - 3/4 and 0 <= a <= -1 by the Fourier restriction norm method. This result include the time local well-posedness in H(s) with s > -3/4 for both positive and negative dissipation. namely for both beta gamma > 0 and beta gamma < 0. We next consider the weak rotation limit. We prove that the solution of the Ostrovsky equation converges to the solution of the KdV equation when the rotation parameter gamma goes to 0 and the initial data of the KdV equation is in L(2). To show this result, we prove a bilinear estimate which is uniform with respect to gamma. (C) 2009 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.jde.2009.09.009

    Web of Science

    researchmap

  • Well-posedness for quadratic nonlinear Schrodinger equations Reviewed

    K. Tsugawa

    RIMS Kokyuroku Bessatsu   B14   163 - 173   2009.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Res. Inst. Math. Sci. (RIMS)  

    CiNii Books

    researchmap

  • Global well-posedness for the KdV equations on the real line with low regularity forcing terms Reviewed

    Kotaro Tsugawa

    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS   8 ( 5 )   681 - 713   2006.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WORLD SCIENTIFIC PUBL CO PTE LTD  

    We consider the initial value problem for the KdV equations with low regularity forcing terms. The case that the forcing term f(x) equals p delta'(x) appears in the study of the excitation of long nonlinear water waves by a moving pressure distribution, where delta'(x) is the first derivative of the Dirac delta function and p is a constant. We have the time global well-posedness with f (x) is an element of L-2 by the L-2 a priori estimate. However, we cannot apply it to the case f (x) is an element of H-sigma, sigma < 0. To overcome this difficulty, we divide f into the high frequency part and the low frequency part and use the scaling argument. Our results include the time local well-posedness with f (x) is an element of H-sigma, sigma >= -3 and the time global well-posedness with f = p delta'(x) or f (x) is an element of H-sigma, sigma >= -3/2. Our main tools are the Fourier restriction norm method and the I-method.

    Web of Science

    researchmap

  • Existence of the global attractor for weakly damped, forced KDV equation on Sobolev spaces of negative index Reviewed

    K Tsugawa

    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS   3 ( 2 )   301 - 318   2004.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER INST MATHEMATICAL SCIENCES  

    In this paper, we treat the weakly damped, forced KdV equation on H-s. We are interested in the lower bound of s to assure the existence of the global attractor. The KdV equation has infinite conservation laws, each of which is defined in H-j (j is an element of Z, j greater than or equal to 0). The existence of the global attractor is usually proved by using those conservation laws. Because the KdV equation on H-s has no conservation law for s < 0, it seems a natural question whether we can show the existence of the global attractor for s < 0. Moreover, because the conservation laws restrict the behavior of solutions, the time global behavior of solutions for s < 0 may be different from that for s greater than or equal to 0. By using a modified energy, we prove the existence of the global attractor for s > -3/8, which is identical to the global attractor for s > 0.

    Web of Science

    researchmap

  • I-method with application to damped forced KdV equation

    K. Tsugawa

    Surikaisekikenkyusho Kokyuroku   1355   48 - 67   2004.1

     More details

    Language:English   Publisher:Res. Inst. Math. Sci. (RIMS)  

    CiNii Books

    researchmap

    Other Link: http://hdl.handle.net/2433/25171

  • Global existence of solutions to systems of wave equations with different propagation speeds in one spatial dimension

    K. Tsugawa

    Surikaisekikenkyusho Kokyuroku   1331   84 - 92   2003.7

     More details

    Language:English   Publisher:Res. Inst. Math. Sci. (RIMS)  

    CiNii Books

    researchmap

    Other Link: http://hdl.handle.net/2433/43293

  • Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions Reviewed

    H Kubo, K Tsugawa

    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS   9 ( 2 )   471 - 482   2003.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER INST MATHEMATICAL SCIENCES  

    In this paper, we treat the coupled system of wave equations whose nonlinearities are \u\(pj)\v\(qj) and propagation speeds may be different from each other. We study the lower bounds of p(j) and q(j) to assure the global existence of a class of small amplitude solutions which includes self-similar solutions. The exponent of self-similar solutions plays crucial role to find the lower bounds. Moreover, we prove that the discrepancy of propagation speeds allow us to bring them down. Conversely, if such conditions for the global existence do not hold, then no self-similar solution exists even for small initial data.

    Web of Science

    researchmap

  • Time local well-posedness of the coupled system of nonlinear wave equations with different propagation speeds

    K. Tsugawa

    Surikaisekikenkyusho Kokyuroku   1235   61 - 90   2001.10

     More details

    Language:English   Publisher:Res. Inst. Math. Sci. (RIMS)  

    CiNii Books

    researchmap

    Other Link: http://hdl.handle.net/2433/41534

  • Well-posedness in the energy space for the Cauchy problem of the coupled system of complex scalar field and Maxwell equations Reviewed

    K. Tsugawa

    Funkcialaj Ekvacioj   43   127 - 161   2000.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Math. Soc. Japan Division of Functional Equations  

    CiNii Books

    researchmap

  • On the coupled system of nonlinear wave equations with different propagation speeds in two space dimensions

    K. Tsugawa

    Surikaisekikenkyusho Kokyuroku   1135   85 - 90   2000.4

     More details

    Language:English   Publisher:Res. Inst. Math. Sci. (RIMS)  

    CiNii Books

    researchmap

    Other Link: http://hdl.handle.net/2433/63763

▼display all

Presentations

  • Local well-posedness of derivative Schrodinger equations on the torus Invited

    Kotaro TSUGAWA

    French-Japanese one meeting in Tours  2023.8 

     More details

  • Well-posedness and parabolic smoothing effect for higher order Schrodinger type equations with constant coefficients Invited

    Kotaro TSUGAWA

    Mathematical Analysis of Nonlinear Dispersive and Wave Equations  2022.8 

     More details

    Event date: 2022.8    

    Language:English  

    researchmap

  • Well-posedness and parabolic smoothing effect for higher order Schrodinger type equations with constant coefficients Invited

    Kotaro TSUGAWA

    神楽坂解析セミナー  2020.11 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Well-posedness and parabolic smoothing effect for higher order linear Schrodinger type equations on the torus Invited International conference

    Kotaro TSUGAWA

    The 37th Kyushu Symposium on Partial Differential Equations  2020.1 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Ill-posedness of derivative nonlinear Schrodinger equations on the torus

    東北大学応用数学セミナー  ( 東北大学理学研究科 )   2018.7 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Ill-posedness of derivative nonlinear Schrodinger equations on the torus

    応用解析研究会  ( 早稲田大学 )   2018.5 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Ill-posedness of derivative nonlinear Schrodinger equations on the torus

    調和解析中大セミナー  ( 中央大学理工学部 )   2018.4 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Ill-posedness of derivative nonlinear Schrodinger equations on the torus

    中大偏微分方程式セミナー  ( 中央大学理工学部 )   2018.4 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Ill-posedness of derivative nonlinear Schrodinger equations on the torus

    津田塾大学PDE研究会  2018.2 

     More details

    Language:English  

    researchmap

  • Ill-posedness of derivative nonlinear Schrodinger equations on the torus

    第2回 PDE Workshop in Miyazaki, 宮崎大学  2018.1 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Ill-posedness of derivative nonlinear Schrodinger equations on the torus

    第7回弘前非線形方程式研究会, 弘前大学  2017.12 

     More details

    Language:English  

    researchmap

  • Ill-posedness of derivative nonlinear Schrodinger equations on the torus

    京都大学NLPDEセミナー  2017.6 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Ill-posedness of derivative nonlinear Schrodinger equations on the torus

    名古屋微分方程式セミナー  2017.5 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Local well-posedness of derivative nonlinear Schrodinger equations on the torus

    Critical Exponents and Nonlinear Evolution Equation  2017.2 

     More details

    Language:English  

    researchmap

  • Local well-posedness and parabolic smoothing effect of semilinear dispersive equations

    第3回 神楽坂非線形波動研究会  2016.12 

     More details

    Language:English  

    researchmap

  • Parabolic smoothing effect and local well-posedness of semilinear fifth order dispersive equations on the torus

    Taiwan-Japan Workshop on Dispersion, Navier Stokes, Kinetic, and Inverse Problems  2016.12 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Local well-posedness and parabolic smoothing effect of semilinear fifth order dispersive equations on the torus

    Harmonic Analysis, Geometric Analysis and PDE Workshop  2016.3 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Parabolic smoothing effect and local well-posedness of fifth order|rn|dispersive equations on the torus

    松山解析セミナー2016, 愛媛大学  2016.2 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Parabolic smoothing effect and local well-posedness of fifth order|rn|dispersive equations on the torus

    波動セミナー(ワークショップ), 北海道大学  2016.2 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • 5階の分散型方程式の局所適切性と放物型平滑化効果

    京都大学数理解析研究所談話会  2015.11 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Refined energy estimate and local well-posedness|rn| of fifth order dispersive equations on the torus

    熊本大学応用解析セミナー  2015.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Refined energy estimate and local well-posedness|rn| of fifth order dispersive equations on the torus

    RIMS研究集会「調和解析と非線形偏微分方程式」  2015.7 

     More details

    Language:English  

    researchmap

  • Refined energy estimate and local well-posedness|rn| of fifth order dispersive equations on the torus

    Nonlinear Evolution Equations and Related Topics  2015.3 

     More details

    Language:English  

    researchmap

  • Refined energy estimate and local well-posedness|rn| of fifth order dispersive equations on the torus

    九州関数方程式セミナー  2014.12 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Refined energy estimate and local well-posedness|rn|of fifth order dispersive equations on the torus

    The 12th Linear and Nonlinear Waves  2014.11 

     More details

    Language:English  

    researchmap

  • Refined energy estimate and local well-posedness|rn|of fifth order dispersive equations on the torus

    第1回神楽坂非線形波動研究会  2014.10 

     More details

    Language:English  

    researchmap

  • 5階の非線形分散型方程式の局所適切性

    日本数学会秋季総合分科会特別講演  2014.9 

     More details

    Language:Japanese  

    researchmap

  • A cancellation property and the well-posedness of fifth order KdV type equations on the torus

    Critical Exponents and Nonlinear Evolution Equation  2014.2 

     More details

    Language:English  

    researchmap

  • Well-posedness of the KdV equation with almost periodic initial data

    第9回非線型の諸問題, 高知大学  2013.9 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • On the normal form reduction

    2013 Participating School in Analysis of PDE Global theory of nonlinear dispersive equations  2013.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Unconditional well-posedness of the fifth order modified KdV equation with periodic boundary condition

    Workshop on Nonlinear Dispersive PDEs  2012.8 

     More details

    Language:English  

    researchmap

  • Well-posedness of the KdV equation with almost periodic initial data

    京都大学NLPDE セミナー  2012.5 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Global well posedness of a stochastic KdV equation

    RIMS短期共同研究「非線形分散型方程式における最近の進展」  2012.5 

     More details

    Language:English  

    researchmap

  • Well-posedness of the KdV equation with almost periodic initial data

    名古屋微分方程式セミナー  2012.4 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Well-posedness of the KdV equation with almost periodic initial data

    非線形偏微分方程式研究会  2012.3 

     More details

    Language:English  

    researchmap

  • Local well-posedness of the KdV equation with almost periodic initial data, Analysis seminar

    Analysis seminar,Princeton University  2011.11 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Local well-posedness of the KdV equation with almost periodic initial data, Analysis seminar

    Math Seminar, University of Toronto  2011.10 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Local well-posedness of the KdV equation with almost periodic initial data

    the 19th Workshop on Differential Equations and its Applications, National Cheng Kung University  2011.1 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Local well-posedness for quadratic nonlinear Schrodinger equations

    Analysis seminar, Courant Institute  2010.3 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Local well-posedness for quadratic nonlinear Schrodinger equations, PDE seminar

    PDE seminar, Brown University  2010.3 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Local well-posedness for the Zakharov system in one space dimension

    NLPDE seminar  2010.1 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Well-posedness for the Zakharov system and Schrodinger equations with a potential term

    研究集会「微分方程式の総合的研究」  2009.12 

     More details

    Language:English  

    researchmap

  • Local well-posedness for the Zakharov system in one space dimension

    mini workshop  2009.11 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Remark on the local well-posedness of the 1D Zakharov system

    RIMS 短期共同研究「非線形双曲型および分散型方程式の解の挙動について」  2009.5 

     More details

    Language:Japanese  

    researchmap

  • Remark on the time local well-posedness of the 1D Zakharov system

    臨時セミナー, パリ南大学  2009.3 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Well-posedness and weak rotation limit for the Ostrovsky quation

    Workshop on Partial Differential Equations  2008.7 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Well-posedness and weak rotation limit for the Ostrovsky quation

    7th AIMS International conference on Dynamical Systems, Differential Equations and Applications  2008.5 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • A bilinear estimate related to the Dirac-Klein-Gordon equations and the wave maps in one space dimension

    Linear and Nonlinear Waves, No.5  2007.11 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Low regularity well-posedness of systems of transport equations

    NLPDE seminar  2007.10 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Well-posedness and weak rotation limit for the Ostrovsky quation

    第4回浜松偏微分方程式研究集会  2006.12 

     More details

    Language:English  

    researchmap

  • Well-posedness and weak rotation limit for the Ostrovsky quation

    Sapporo Guest House Symposium on Mathematics 22"Nonlinear wave equations"  2006.11 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Well-posedness and weak rotation limit for the Ostrovsky quation

    日本数学会2006年度秋季総合分科会  2006.9 

     More details

    Language:English  

    researchmap

  • A remark on Koch-Tzvetkov type estimates

    RIMS研究集会「非線形分散型・波動方程式における解の漸近挙動」  2006.5 

     More details

    Language:English  

    researchmap

  • 滑らかさの低い外力を持つKdV方程式の可解性

    応用数学セミナー, 東北大学  2005.11 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Global well-posedness for the forced KdV equations

    日本数学会2005年度秋季総合分科会  2005.9 

     More details

    Language:English  

    researchmap

  • Global well-posedness for the forced KdV equations

    応用解析セミナー, 熊本大学  2005.9 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • フーリエ制限法のKdV方程式への応用

    第27回発展方程式若手セミナー  2005.8 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Global well-posedness of the KdV equations with low regularity forcing terms

    The 14th MSJ-IRI``Asymptotic Analysis and Singularity''  2005.7 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • 滑らかさの低い外力項を持つKdV方程式の適切性

    解析ゼミ, 埼玉大学  2005.6 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 滑らかさの低い外力項を持つKdV方程式の可解性について

    微分方程式セミナー, 大坂大学  2005.6 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Time global behavior of the solutions of the KdV equations with low regularity forcing terms

    Seminaire d'analyse appliquee A3, Universite de Picardie-Jules Verne  2004.6 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Global well-posedness for the KdV equations with low regularity forcing terms

    Seminaire d'equations aux derivees partielles non lineaires, Universite paris-sud  2004.6 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Existence of the global attractor for weakly damped, forced KdV equations on Sobolev space of negative index

    非線形偏微分方程式阪大セミナー,大阪大学  2003.7 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • I-method with application to damped forced KdV equation

    RIMS短期共同研究集会「非線形波動および分散型方程式に関する研究」  2003.5 

     More details

    Language:English  

    researchmap

  • Existence of the global attractor for weakly damped, forced KdV equations on Sobolev space of negative index

    Fourth Northeastern Symposium on Mathematical Analysis  2003.2 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Existence of the global attractor for weakly damped, forced KdV equations on Sobolev space of negative index

    Nonlinear wave equations and related fields  2003.2 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Existence of the global attractor for weakly damped, forced KdV equations on Sobolev space of negative index

    解析セミナー,神戸大学  2002.11 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Existence of the global attractor for weakly damped, forced KdV equations on Sobolev space of negative index

    研究集会「非線形波動及び分散型方程式に関する最近の発展について」,大阪大学  2002.10 

     More details

    Language:English  

    researchmap

  • Existence of the global attractor for weakly damped, forced KdV equations on Sobolev space of negative index

    広島数理解析セミナー,広島大学  2002.10 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Global existence of solutions to systems of wave equations with different propagation speeds in one space dimensions

    日本数学会秋季総合分科会,島根大学  2002.9 

     More details

    Language:English  

    researchmap

  • Existence of the global attractor for weakly damped, forced KdV equations on Sobolev space of negative index

    日本数学会秋季総合分科会,島根大学  2002.9 

     More details

    Language:English  

    researchmap

  • Existence of the global attractor for weakly damped, forced KdV equations on Sobolev space of negative index

    第27回偏微分方程式論札幌シンポジウム,北海道大学  2002.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Existence of the global attractor for weakly damped, forced KdV equations on Sobolev space of negative index

    Nonlinear wave equation and related topics  2002.7 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Existence of the global attractor for weakly damped, forced KdV equations on Sobolev space of negative index

    非線形数理集中セミナー, 東京工業大学  2002.7 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Existence of the global attractor for weakly damped, forced KdV equations on Sobolev space of negative index

    第24回神楽坂解析セミナー, 東京理科大学  2002.6 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • 伝播速度の違う波動方程式がカップルしたシステム---特にstrongly coupled caseについて---

    研究集会「非線形双曲型方程式系の解の挙動に関する研究」,京都大学数理解析研究所  2002.5 

     More details

    Language:Japanese  

    researchmap

  • Time local well-posedness for the coupled system of wave equations with different propagation speeds

    研究集会「非線型波動方程式系の解の構造」,北海道大学  2001.12 

     More details

    Language:English  

    researchmap

  • Time local well-posedness of the coupled system of nonlinear wave equations with different propagation speeds

    調和解析学と非線形偏微分方程式研究集会, 京都大学数理解析研究所  2001.7 

     More details

    Language:English  

    researchmap

  • Time local well-posedness of the coupled system of nonlinear wave equations with different speeds

    応用数学セミナー, 東北大学  2001.6 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Time local well-posedness of the coupled system of nonlinear wave equations with different speeds

    九大関数方程式セミナー  2001.5 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Time local well-posedness for the coupled system of nonlinear wave equations with different propagation speeds

    日本数学会2001年度年会  2001.3 

     More details

    Language:English  

    researchmap

  • Self-similar solutions of the coupled system of wave equations with different propagation speeds

    日本数学会2001年度年会  2001.3 

     More details

    Language:English  

    researchmap

  • Self-similar solutions of the coupled system of wave equations with different propagation speeds

    Workshop on Asymptotic Behavior of Solutions to Partial Differential Equations  2001.1 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • 伝播速度の違う波動方程式のカップルしたシステムのtime local well-posedness について

    解析学火曜セミナー,東京大学  2000.12 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • On the coupled system of nonlinear wave equations with different propagation speeds in spatial dimensions 1 and 2

    日本数学会2000年度年会  2000.3 

     More details

    Language:English  

    researchmap

  • Local well-posedness for systems of wave equations with different propagation speeds

    Sapporo Guest House Minisymposium 5 First Northeastern Symposium on Mathematical Analysis  2000.2 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • On the coupled system of nonlinear wave equations with different propagation speeds in two space dimension

    Sapporo Guest House Minisymposium 3 Nonlinear Wave Equations  1999.11 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • On the coupled system of nonlinear wave equations with different propagation speeds in two space dimension

    非線型発展方程式とその応用研究集会  1999.10 

     More details

    Language:English  

    researchmap

  • 伝播速度の違う波動方程式のカップルしたシステムの時間局所適切性について

    微分方程式セミナー,東北大学  1999.6 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Well-posedness in the Energy space for the Cauchy problem of coupled system of complex scalar field and Maxwell equations

    第2回箱根非線型発展方程式セミナー  1999.1 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Well-posedness in the Energy space for the Cauchy problem of coupled system of complex scalar field and Maxwell equations

    第20回発展方程式若手セミナー  1998.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Well-posedness in the Energy space for the Cauchy problem of coupled system of complex scalar field and Maxwell equations

    静岡大学・解析セミナー  1997.11 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Well-posedness in the Energy space for the Cauchy problem of coupled system of complex scalar field and Maxwell equations

    非線型双曲型, 分散型偏微分方程式の解の構造研究集会  1997.10 

     More details

    Language:English  

    researchmap

  • The Cauchy Problem for coupled Maxwell equation and scalar field

    東京大学, 応用解析セミナーサマースクール  1997.9 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • The Cauchy Problem for coupled Maxwell equation and scalar field

    日本数学会1997年度秋季総合分科会  1997.9 

     More details

    Language:English  

    researchmap

▼display all

Research Projects

  • 非線形分散型方程式の代数的構造と初期値問題の適切性

    Grant number:17K05316  2017.4 - 2023.3

    日本学術振興会  科学研究費助成事業  基盤研究(C) 

    津川 光太郎

      More details

    Grant amount: \4550000 ( Direct Cost: \3500000 、 Indirect Cost: \1050000 )

    発展方程式の初期値問題において最も基本的な問題は適切性(解の存在、一意性、初期値に対する連続依存性)である。非線形分散型方程式の研究においては、これまで非線形項の特異性がそれほど強くない場合に対して多くの研究がなされてきた。しかし、非線形項に微分が含まれていて強い特異性を持つ場合は評価が難しく、今後の研究が期待されている。申請者の昨年度の研究では高階定数係数の線形シュレディンガー型方程式について研究を行い、初期値問題の適切性の結果が持つ特徴に基づいて方程式を分散型と放物型と楕円型に分類することに成功した。これを変数係数に拡張しさらには非線形方程式へと発展させていく予定であるが、今年度はそのための準備としてより単純な方程式である高階変数係数KdV型方程式について研究を行った。エネルギー法に基づいた手法で変数係数の方程式を本質的に定数係数の場合に帰着することに成功し、これを適切性の結果が持つ特徴により分類を行った。ここで得られた結果では、分類のための条件が帰納的に定義される複雑な結果した得られておらず、分類として具体的にどのような方程式を含んでいるかを計算により確かめることが難しい。また、将来、高階のシュレディンガー型方程式や非線形方程式へと研究をさたに発展させるためには、この段階においてより単純化された結果を得ることが出来ると便利である。現在はそのためにこらまでに得られた結果を改良中である。

    researchmap

  • An investigation of symmetries in the geometric structure and existence of global solutions to nonlinear dispersive wave equations

    Grant number:25287022  2013.4 - 2018.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B) 

    Takaoka Hideo, KUBO Hideo, NAKANISHI Kenji, TSUGAWA Kotaro

      More details

    Grant amount: \16250000 ( Direct Cost: \12500000 、 Indirect Cost: \3750000 )

    In this study, I have developed the local and global well-posedness for the initial value problem related to the nonlinear Schrodinger equations in which dispersion effect and nonlinear interaction effect are incorporating. Using the Fourier analysis, I separated the solution into two parts; non-resonant and resonant oscillation parts, which have different in nature and distinguish nonuniformity part of solutions. For the nonlinear Schrodinger equations both with derivative in nonlinearities and on a sphere domain, I improved the local well-posedness for large function spaces. Moreover, I showed that there exists exchange of energy between Fourier modes. In the research process, I observed the estimation of energy exchange between different Fourier modes, due to the contribution in the nonlinear interaction.

    researchmap

  • Cauchy problem of nonlinear dispersive equations

    Grant number:25400158  2013.4 - 2017.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)  Nagoya University

    Tsugawa Kotaro

      More details

    Grant amount: \4940000 ( Direct Cost: \3800000 、 Indirect Cost: \1140000 )

    First, we proved the global well-posedness and asymptotic behavior of the Cauchy problem of Zakharov system in higher dimensions. We used the theory of Up, Vp space to prove it. The main difficulty comes from the difference of the properties of the linear equations. To overcome it, we used the intersection space of V2 space and Lebesgue space related to the end-point Strichartz estimate. Second, we categolized the fifth order KdV type equations. By using the normal form reduction, energy method and Bona-Smith approximation, we proved that the local well-posedness and parabolic smoothing effect.

    researchmap

  • geometric structure of nonlinearity and singularity of solutions for wave equations

    Grant number:22740088  2010.4 - 2014.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)  Nagoya University

    KOTARO Tsugawa

      More details

    Grant amount: \3250000 ( Direct Cost: \2500000 、 Indirect Cost: \750000 )

    We studied the local and global well-posedness of the Cauchy problem for nonlinear dipersive equations and hyperbolic equations by the harmonic analysis. We improved the known results for a quadratic nonlinear Schrodinger equation and obtained the well-posedness result for low regularity data. The result is also applied to good Boussinesq equation. We showed the local well-posedness for nonlinear Dirac equation and Dirac-Klein-Gordon equation by using the property of null form. We also studied the Cauchy problem for the KdV equations with quasi periodic data.

    researchmap

  • Analysis of properties of solutions to dispersive equations via canonical transforms and comparison principle

    Grant number:20340029  2008 - 2012

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)  Nagoya University

    SUGIMOTO Mitsuru, TSUGAWA Kotaro, KATO Jun, HISHIDA Toshiaki, MIYAKE Masatake, TACHIZAWA Kazuya, TOMITA Naohito

      More details

    Grant amount: \18590000 ( Direct Cost: \14300000 、 Indirect Cost: \4290000 )

    By developing a global boundedness theory of Fourier integral operators, we established a method to deduce estimates for solutions to partial differential equations from those for their normal forms, and furthermore, prepared a new method to make a comparison of estimates for solutions from the comparison of symbols of two partial differential equations, so that we approached to nonlinear problems.

    researchmap

  • Solvability and properties of solutions of the Cauchy problem of equations related to the KdV equation

    Grant number:18740068  2006 - 2008

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)  Nagoya University

    TSUGAWA Tsugawa

      More details

    Grant amount: \3800000 ( Direct Cost: \3500000 、 Indirect Cost: \300000 )

    researchmap

  • Geometric approach to fluid mechanics

    Grant number:18340025  2006 - 2008

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)  Nagoya University

    KIMURA Yosifumi, KANAI Masahiko, NAGAO Taro, TSUGAWA Kotaro, MITSUMATSU Yoshihiko

      More details

    Grant amount: \15390000 ( Direct Cost: \12900000 、 Indirect Cost: \2490000 )

    researchmap

▼display all