2023/03/27 更新

写真a

シラガ タケハル
白髪 丈晴
SHIRAGA Takeharu
所属
理工学部 准教授
その他担当機関
理工学研究科情報工学専攻博士課程前期課程
連絡先
メールによる問い合わせは《こちら》から
外部リンク

学位

  • 博士(工学) ( 九州大学 )

  • 修士(工学) ( 九州大学 )

学歴

  • 2017年3月
     

    九州大学   システム情報科学府   情報学専攻   博士後期   修了

  • 2014年3月
     

    九州大学   システム情報科学府   情報学専攻   博士前期   修了

  • 2012年3月
     

    九州大学   工学部   電気情報工学科   卒業

  • 2008年3月
     

    岡山県立倉敷南高等学校   卒業

経歴

  • 2022年4月 -  

    中央大学理工学部准教授

  • 2021年4月 - 2022年3月

    東京工業大学情報理工学院助教

  • 2017年4月 - 2021年3月

    中央大学理工学部助教

  • 2015年4月 - 2017年3月

    日本学術振興会特別研究員DC2(九州大学大学院システム情報科学科)

  • 2015年4月 - 2017年3月

    日本学術振興会特別研究員DC2(九州大学大学院システム情報科学科)

所属学協会

  • 情報処理学会

  • 日本オペレーションズ・リサーチ学会

  • 日本応用数理学会

研究キーワード

  • アルゴリズム理論

研究分野

  • 情報通信 / 情報学基礎論  / 情報学基礎理論

論文

  • Phase transitions of best-of-two and best-of-three on stochastic block Models 査読

    Nobutaka Shimizu, Takeharu Shiraga

    Proceedings of the 33rd International Symposium on Distributed Computing (DISC 2019)   146   32:1 - 32:17   2019年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik  

    DOI: 10.4230/LIPIcs.DISC.2019.32

    researchmap

  • Dispersion processes 査読

    Colin Cooper, Andrew McDowell, Tomasz Radzik, Nicolas Rivera, Takeharu Shiraga

    Random Structures and Algorithms   53 ( 4 )   561 - 585   2018年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:John Wiley & Sons Inc.  

    DOI: 10.1002/rsa.20822

    researchmap

  • Deterministic random walks for rapidly mixing chains 査読

    Takeharu Shiraga, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita

    SIAM Journal on Discrete Mathematics   32 ( 3 )   2180 - 2193   2018年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Society for industrial and applied mathematics  

    DOI: 10.1137/16M1087667

    researchmap

  • Total variation discrepancy of deterministic random walks for ergodic Markov chains 査読

    Takeharu Shiraga, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita

    THEORETICAL COMPUTER SCIENCE   699   63 - 74   2017年11月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    Motivated by a derandomization of Markov chain Monte Carlo (MCMC), this paper investigates a deterministic random walk, which is a deterministic process analogous to a random walk. There is some recent progress in the analysis of the vertex-wise discrepancy (i.e., Loo-discrepancy), while little is known about the total variation discrepancy (i.e., L-1-discrepancy), which plays an important role in the analysis of an FPRAS based on MCMC. This paper investigates the L-1-discrepancy between the expected number of tokens in a Markov chain and the number of tokens in its corresponding deterministic random walk. First, we give a simple but nontrivial upper bound O(mt*) of the L-1-discrepancy for any ergodic Markov chains, where m is the number of edges of the transition diagram and t* is the mixing time of the Markov chain. Then, we give a better upper bound O(m t*) for non-oblivious deterministic random walks, if the corresponding Markov chain is ergodic and lazy. We also present some lower bounds. (C) 2016 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.tcs.2016.11.017

    Web of Science

    researchmap

  • Fast plurality consensus in regular expanders 査読

    Colin Cooper, Tomasz Radzik, Nicolás Rivera, Takeharu Shiraga

    Leibniz International Proceedings in Informatics, LIPIcs   91   13:1 - 13:16   2017年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing  

    In a voting process on a graph vertices revise their opinions in a distributed way based on the opinions of nearby vertices. The voting completes when the vertices reach consensus, that is, they all have the same opinion. The classic example is synchronous pull voting where at each step, each vertex adopts the opinion of a random neighbour. This very simple process, however, can be slow and the final opinion is not necessarily the one with the initial largest support. It was shown earlier that if there are initially only two opposing opinions, then both these drawbacks can be overcome by a synchronous two-sample voting, in which at each step each vertex considers its own opinion and the opinions of two random neighbours. If there are initially three or more opinions, a problem arises when there is no clear majority. One class of opinions may be largest (the plurality opinion), although its total size is less than that of two other opinions put together. We analyse the performance of the two-sample voting on d-regular graphs for this case. We show that, if the difference between the initial sizes A1 and A2 of the largest and second largest opinions is at least Cn max{ √ (log n)/A1, λ}, then the largest opinion wins in O((n log n)/A1) steps with high probability. Here C is a suitable constant and is the absolute second eigenvalue of transition matrix P = Adj(G)/d of a simple random walk on the graph G. Our bound generalizes the results of Becchetti et al. [SPAA 2014] for the related three-sample voting process on complete graphs. Our bound implies that if λ = o(1), then the two-sample voting can consistently converge to the largest opinion, even if A1-A2 = o(n). If λ is constant, we show that the case A1 -A2 = o(n) can be dealt with by sampling using short random walks. Finally, we give a simple and efficient push voting algorithm for the case when there are a number of large opinions and any of them is acceptable as the final winning opinion.

    DOI: 10.4230/LIPIcs.DISC.2017.13

    Scopus

    researchmap

  • The cover time of deterministic random walks for general transition probabilities 査読

    Takeharu Shiraga

    Proceedings of the 27th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA'16)   328 - 340   2016年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:International Conference on Probabilistic, Combinatorial and Asymptotic Methods |rn|for the Analysis of Algorithms  

    researchmap

  • Total variation discrepancy of deterministic random walks for ergodic Markov chains 査読

    Takeharu Shiraga, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita

    Proceedings of the 13th Workshop on Analytic Algorithmics and Combinatorics (ANALCO 2016)   138 - 148   2016年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:Society for Industrial and Applied Mathematics  

    DOI: 10.1137/1.9781611974324.13

    researchmap

  • Deterministic random walks for rapidly mixing chains 査読

    Takeharu Shiraga, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita

    Proceedings of the 9th Hungarian-Japanese Symposium|rn|on Discrete Mathematics and Its Applications   88 - 91   2015年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:Hungarian-Japanese Symposium|rn|on Discrete Mathematics and Its Applications  

    researchmap

  • Fast Consensus for Voting on General Expander Graphs 査読

    Colin Cooper, Robert Elsaesser, Tomasz Radzik, Nicolas Rivera, Takeharu Shiraga

    DISTRIBUTED COMPUTING (DISC 2015)   9363   248 - 262   2015年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:SPRINGER INT PUBLISHING AG  

    Distributed voting is a fundamental topic in distributed computing. In the standard model of pull voting, at each step every vertex chooses a neighbour uniformly at random and adopts its opinion. The voting is completed when all vertices hold the same opinion. In the simplest case, each vertex initially holds one of two different opinions. This partitions the vertices into arbitrary sets A and B. For many graphs, including regular graphs and irrespective of their expansion properties, if both A and B are sufficiently large sets, then pull voting requires Omega(n) expected steps, where n is the number of vertices of the graph.
    In this paper we consider a related class of voting processes based on sampling two opinions. In the simplest case, every vertex v chooses two random neighbours at each step. If both these neighbours have the same opinion, then v adopts this opinion. Otherwise, v keeps its own opinion. Let G be a connected graph with n vertices and m edges. Let P be the transition matrix of a simple random walk on G with second largest eigenvalue lambda < 1/root 2. We show that if the initial imbalance in degree between the two opinions satisfies vertical bar d(A) - d(B)vertical bar/2m >= 2 lambda(2), then with high probability voting completes in O(log n) steps, and the opinion with the larger initial degree wins.
    The condition that lambda < 1/root 2 includes many classes of expanders, for example random d-regular graphs where d >= 10. If however 1/root 2 <= lambda(P) <= 1 - epsilon for a constant epsilon > 0, or only a bound on the conductance of the graph is known, the sampling process can be modified so that voting still provably completes in O(log n) steps with high probability. The modification uses two sampling based on probing to a fixed depth O(1/epsilon) from any vertex.
    In its most general form our voting process allows vertices to bias their sampling of opinions among their neighbours to achieve a desired outcome. This is done by allocating weights to edges.

    DOI: 10.1007/978-3-662-48653-5_17

    Web of Science

    researchmap

  • Coalescing walks on rotor-router systems 査読

    Colin Cooper, Tomasz Radzik, Nicolás Rivera, Takeharu Shiraga

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)   9439   444 - 458   2015年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:Springer Verlag  

    We consider the rotor-router mechanism for distributing particles in an undirected graph. If the last particle passing through a vertex v took an edge (v,u), then the next time a particle is at v, it will leave v along the next edge (v,w) according to a fixed cyclic order of edges adjacent to v. The system works in synchronized steps and when two or more particles meet at the same vertex, they coalesce into one particle. A k-particle configuration of such a system is stable, if it does not lead to any coalescing. For 2≤k≤n, we give the full characterization of stable k-particle configurations for cycles. We also show sufficient conditions for regular graphs with n vertices to admit n-particle stable configurations.

    DOI: 10.1007/978-3-319-25258-2_31

    Scopus

    researchmap

  • L∞-discrepancy analysis of polynomial-time deterministic samplers emulating rapidly mixing chains 査読

    Takeharu Shiraga, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita

    Proceedings of the 20th International Computing and Combinatorics Conference (COCOON 2014)   8591   25 - 36   2014年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:Springer International Publishing  

    DOI: 10.1007/978-3-319-08783-2_3

    Web of Science

    researchmap

▼全件表示

講演・口頭発表等

  • 確率的分散投票モデルの収束時間解析

    白髪丈晴

    数理計画問題に対する理論とアルゴリズムの研究  2019年8月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • Analyses of the cover time of deterministic random walks 国際会議

    白髪 丈晴

    The 21st Conference of the International Federation of Operational Research Societies (IFORS 2017)  ( Quebec, Canada )   2017年7月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(一般)  

    researchmap

  • 一般のマルコフ連鎖と決定的過程の総変動誤差

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    日本オペレーションズ・リサーチ学会秋季研究発表会  2016年9月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • 一般の遷移確率に対する決定性ランダムウォークの全訪問時間

    白髪 丈晴

    日本応用数理学会2016年度年会  2016年9月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • 一般の遷移確率に対する関数ルーターモデルの全訪問時間

    白髪 丈晴

    研究報告アルゴリズム(AL)  2016年6月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • 多項式時間決定的サンプラーの頂点誤差解析

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    研究報告アルゴリズム(AL)  2014年9月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • An Analysis of Deterministic Random Walks on Hypercubes using the Krawtchouk Polynomial

    Takeharu Shiraga, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita

    The 20th Conference of the International Federation of Operational Research Societies (IFORS 2014)  2014年7月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(一般)  

    researchmap

  • 高速混交するマルコフ連鎖の脱乱択化

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    2014年電子情報通信学会総合大会  2014年3月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • ランダムウォークの脱乱択化

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    2013年度確率モデルシンポジウム  2014年1月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • 関数ルーターモデルによるハイパーキューブ上ランダムウォークの脱乱択化

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    研究報告アルゴリズム(AL)  2013年5月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • 関数ルーターモデルの提案

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    2013年電子情報通信学会総合大会  2013年3月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • 無理数の遷移確率をもつランダムウォークの脱乱択化

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    日本オペレーションズ・リサーチ学会春季研究発表会  2013年3月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • 無理数遷移確率を許すランダムウォークの脱乱択化

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    数理解析研究所講究録  2013年1月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • 無理数遷移確率ランダムウォークの脱乱択化

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    研究報告アルゴリズム(AL)  2012年11月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • ロータールーターモデルの設計手法の提案

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    情報処理学会研究報告(火の国情報シンポジウム2012)  2012年3月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • ロータールーターモデルの周期性について

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    平成23年度電気関係学会九州支部連合大会  2011年9月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

▼全件表示

受賞

  • 研究賞奨励賞

    2019年9月   日本オペレーションズ・リサーチ学会  

  • 若手優秀講演賞

    2017年6月   日本応用数理学会   一般の遷移確率に対する決定性ランダムウォークの全訪問時間

  • 優秀発表賞

    2016年5月   日本オペレーションズ・リサーチ学会研究部会「最適化の基盤とフロンティア」   一般の遷移確率を持つマルコフ連鎖の脱乱択化

  • 優秀発表賞

    2015年5月   日本オペレーションズ・リサーチ学会研究部会「最適化の基盤とフロンティア」   一般グラフ上での局所多数決モデルの解析

  • コンピュータサイエンス領域奨励賞

    2014年9月   情報処理学会   関数ルーターモデルによるハイパーキューブ上ランダムウォークの脱乱択化

  • 山下記念研究賞

    2014年3月   情報処理学会   無理数遷移確率ランダムウォークの脱乱択化

  • 優秀発表賞

    2013年6月   日本OR 学会「最適化の理論と応用」研究部会   無理数の遷移確率を含むランダムウォークの脱乱択化

▼全件表示

共同研究・競争的資金等の研究課題

  • 非線形なopinion dynamicsに対する収束時間解析

    2019年4月 - 2022年3月

    中央大学  若手研究 

    白髪丈晴

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    配分額:2700000円

    researchmap

  • マルコフ連鎖解析に基づく非正則・動的ネットワーク上負荷分散アルゴリズムの理論保証

    2017年8月 - 2019年3月

    文部科学省  科学研究費補助金(日本学術振興会・文部科学省)-若手研究(スタートアップ) 

    白髪丈晴

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    配分額:2730000円

    researchmap

委員歴

  • 2018年4月 -  

    日本オペレーションズ・リサーチ学会   Journal of the Operations Research Society of Japan 論文誌編集委員 編集幹事