Updated on 2024/10/28

写真a

 
SHIRAGA Takeharu
 
Organization
Faculty of Science and Engineering Associate Professor
Other responsible organization
Information and System Engineering Course of Graduate School of Science and Engineering, Master's Program
Contact information
The inquiry by e-mail is 《here
External link

Degree

  • Ph.D. Eng. ( Kyushu University )

  • M. Eng. ( Kyushu University )

Education

  • 2017.3
     

    Kyushu University   Graduate School of Information Science and Electrical Engineering   Department of Informatics   doctor course   completed

  • 2014.3
     

    Kyushu University   Graduate School of Information Science and Electrical Engineering   Department of Informatics   master course   completed

  • 2012.3
     

    Kyushu University   Faculty of Engineering   graduated

  • 2008.3
     

    岡山県立倉敷南高等学校   graduated

Research History

  • 2022.4 -  

    中央大学理工学部准教授

  • 2021.4 - 2022.3

    東京工業大学情報理工学院助教

  • 2017.4 - 2021.3

    中央大学理工学部助教

  • 2015.4 - 2017.3

    日本学術振興会特別研究員DC2(九州大学大学院システム情報科学科)

Professional Memberships

  • 情報処理学会

  • 日本オペレーションズ・リサーチ学会

  • The Japan Society for Industrial and Applied Mathematics

Research Interests

  • アルゴリズム理論

Research Areas

  • Informatics / Theory of informatics  / 情報学基礎理論

Papers

  • Quasi‐majority functional voting on expander graphs

    Nobutaka Shimizu, Takeharu Shiraga

    Random Structures & Algorithms   65 ( 4 )   613 - 643   2024.5

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    Abstract

    Consider an ‐vertex graph where each vertex holds one of two distinct opinions. We are interested in the consensus time of synchronous voting processes, where each vertex is allowed to update its opinion according to a predefined commonly local updating rule. This article proposes a general class of voting processes called quasi‐majority functional voting and gives upper and lower bounds of the consensus time. Our results cover many previous results on specific processes, for example, best‐of‐two (a.k.a. 2Choices) and best‐of‐three (a.k.a. 3Majority), as special cases. Our key ingredient is a nonlinear extension of the expander mixing lemma, which enables us to estimate expected and variance changes in opinions of quasi‐majority functional voting on expander graphs.

    DOI: 10.1002/rsa.21224

    researchmap

  • Reversible random walks on dynamic graphs.

    Nobutaka Shimizu, Takeharu Shiraga

    Random Struct. Algorithms   63 ( 4 )   1100 - 1136   2023.12

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1002/rsa.21164

    researchmap

  • Reversible random walks on dynamic graphs

    Nobutaka Shimizu, Takeharu Shiraga

    Random Structures & Algorithms   63 ( 4 )   1100 - 1136   2023.6

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    Abstract

    This paper discusses random walks on edge‐changing dynamic graphs. We prove general and improved bounds for mixing, hitting, and cover times for a random walk according to a sequence of irreducible and reversible transition matrices with the time‐invariant stationary distribution. An interesting consequence is the tight bounds of the lazy Metropolis walk on any dynamic connected graph. We also prove bounds for multiple random walks on dynamic graphs. Our results extend previous upper bounds for simple random walks on dynamic graphs and give improved and tight upper bounds in several cases. Our results reinforce the observation that time‐inhomogeneous Markov chains with an invariant stationary distribution behave almost identically to a time‐homogeneous chain.

    DOI: 10.1002/rsa.21164

    researchmap

  • Phase transitions of Best‐of‐two and Best‐of‐three on stochastic block models

    Nobutaka Shimizu, Takeharu Shiraga

    Random Structures & Algorithms   59 ( 1 )   96 - 140   2021.8

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    DOI: 10.1002/rsa.20992

    researchmap

    Other Link: https://onlinelibrary.wiley.com/doi/full-xml/10.1002/rsa.20992

  • How many vertices does a random walk miss in a network with moderately increasing the number of vertices?

    Shuji Kijima, Nobutaka Shimizu, Takeharu Shiraga

    Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms   106 - 122   2021

     More details

    Publishing type:Research paper (international conference proceedings)  

    Real networks are often dynamic. In response to it, analyses of algorithms on dynamic networks attract more and more attention in network science and engineering. Random walks on dynamic graphs also have been investigated actively in more than a decade, where in most cases the edge set changes but the vertex set is static. The vertex sets are also dynamic in many real networks. Motivated by a new technology of the analysis of random walks on dynamic graphs, this paper introduces a simple model of graphs with an increasing number of vertices and presents an analysis of random walks associated with the cover time on such graphs. In particular, we reveal that a random walk asymptotically covers the vertices all but a constant number if the vertex set grows moderately.

    Scopus

    researchmap

  • Minimum point-overlap labelling. Reviewed

    Yuya Higashikawa, Keiko Imai, Takeharu Shiraga, Noriyoshi Sukegawa, Yusuke Yokosuka

    Optimization Methods and Software   36 ( 2-3 )   316 - 325   2021

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1080/10556788.2020.1833880

    researchmap

  • Quasi-majority functional voting on expander graphs

    Nobutaka Shimizu, Takeharu Shiraga

    Leibniz International Proceedings in Informatics, LIPIcs   168   2020.6

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing  

    Consider a distributed graph where each vertex holds one of two distinct opinions. In this paper, we are interested in synchronous voting processes where each vertex updates its opinion according to a predefined common local updating rule. For example, each vertex adopts the majority opinion among 1) itself and two randomly picked neighbors in best-of-two or 2) three randomly picked neighbors in best-of-three. Previous works intensively studied specific rules including best-of-two and best-of-three individually. In this paper, we generalize and extend previous works of best-of-two and best-of-three on expander graphs by proposing a new model, quasi-majority functional voting. This new model contains best-of-two and best-of-three as special cases. We show that, on expander graphs with sufficiently large initial bias, any quasi-majority functional voting reaches consensus within O(log n) steps with high probability. Moreover, we show that, for any initial opinion configuration, any quasi-majority functional voting on expander graphs with higher expansion (e.g., Erdős-Rényi graph G(n, p) with p = Ω(1/√n)) reaches consensus within O(log n) with high probability. Furthermore, we show that the consensus time is O(log n/log k) of best-of-(2k + 1) for k = o(n/log n).

    DOI: 10.4230/LIPIcs.ICALP.2020.97

    Scopus

    researchmap

  • Phase transitions of best-of-two and best-of-three on stochastic block Models Reviewed

    Nobutaka Shimizu, Takeharu Shiraga

    Proceedings of the 33rd International Symposium on Distributed Computing (DISC 2019)   146   32:1 - 32:17   2019.10

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik  

    DOI: 10.4230/LIPIcs.DISC.2019.32

    researchmap

  • Dispersion processes Reviewed

    Colin Cooper, Andrew McDowell, Tomasz Radzik, Nicolas Rivera, Takeharu Shiraga

    Random Structures and Algorithms   53 ( 4 )   561 - 585   2018.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:John Wiley & Sons Inc.  

    DOI: 10.1002/rsa.20822

    researchmap

  • Deterministic random walks for rapidly mixing chains Reviewed

    Takeharu Shiraga, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita

    SIAM Journal on Discrete Mathematics   32 ( 3 )   2180 - 2193   2018.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Society for industrial and applied mathematics  

    DOI: 10.1137/16M1087667

    researchmap

  • Total variation discrepancy of deterministic random walks for ergodic Markov chains Reviewed

    Takeharu Shiraga, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita

    THEORETICAL COMPUTER SCIENCE   699   63 - 74   2017.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCIENCE BV  

    Motivated by a derandomization of Markov chain Monte Carlo (MCMC), this paper investigates a deterministic random walk, which is a deterministic process analogous to a random walk. There is some recent progress in the analysis of the vertex-wise discrepancy (i.e., Loo-discrepancy), while little is known about the total variation discrepancy (i.e., L-1-discrepancy), which plays an important role in the analysis of an FPRAS based on MCMC. This paper investigates the L-1-discrepancy between the expected number of tokens in a Markov chain and the number of tokens in its corresponding deterministic random walk. First, we give a simple but nontrivial upper bound O(mt*) of the L-1-discrepancy for any ergodic Markov chains, where m is the number of edges of the transition diagram and t* is the mixing time of the Markov chain. Then, we give a better upper bound O(m t*) for non-oblivious deterministic random walks, if the corresponding Markov chain is ergodic and lazy. We also present some lower bounds. (C) 2016 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.tcs.2016.11.017

    Web of Science

    researchmap

  • Fast plurality consensus in regular expanders Reviewed

    Colin Cooper, Tomasz Radzik, Nicolás Rivera, Takeharu Shiraga

    Leibniz International Proceedings in Informatics, LIPIcs   91   13:1 - 13:16   2017.10

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing  

    In a voting process on a graph vertices revise their opinions in a distributed way based on the opinions of nearby vertices. The voting completes when the vertices reach consensus, that is, they all have the same opinion. The classic example is synchronous pull voting where at each step, each vertex adopts the opinion of a random neighbour. This very simple process, however, can be slow and the final opinion is not necessarily the one with the initial largest support. It was shown earlier that if there are initially only two opposing opinions, then both these drawbacks can be overcome by a synchronous two-sample voting, in which at each step each vertex considers its own opinion and the opinions of two random neighbours. If there are initially three or more opinions, a problem arises when there is no clear majority. One class of opinions may be largest (the plurality opinion), although its total size is less than that of two other opinions put together. We analyse the performance of the two-sample voting on d-regular graphs for this case. We show that, if the difference between the initial sizes A1 and A2 of the largest and second largest opinions is at least Cn max{ √ (log n)/A1, λ}, then the largest opinion wins in O((n log n)/A1) steps with high probability. Here C is a suitable constant and is the absolute second eigenvalue of transition matrix P = Adj(G)/d of a simple random walk on the graph G. Our bound generalizes the results of Becchetti et al. [SPAA 2014] for the related three-sample voting process on complete graphs. Our bound implies that if λ = o(1), then the two-sample voting can consistently converge to the largest opinion, even if A1-A2 = o(n). If λ is constant, we show that the case A1 -A2 = o(n) can be dealt with by sampling using short random walks. Finally, we give a simple and efficient push voting algorithm for the case when there are a number of large opinions and any of them is acceptable as the final winning opinion.

    DOI: 10.4230/LIPIcs.DISC.2017.13

    Scopus

    researchmap

  • The cover time of deterministic random walks for general transition probabilities Reviewed

    Takeharu Shiraga

    Proceedings of the 27th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA'16)   328 - 340   2016.7

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:International Conference on Probabilistic, Combinatorial and Asymptotic Methods |rn|for the Analysis of Algorithms  

    researchmap

  • Total variation discrepancy of deterministic random walks for ergodic Markov chains Reviewed

    Takeharu Shiraga, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita

    Proceedings of the 13th Workshop on Analytic Algorithmics and Combinatorics (ANALCO 2016)   699   138 - 148   2016.1

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:Society for Industrial and Applied Mathematics  

    DOI: 10.1137/1.9781611974324.13

    researchmap

  • Deterministic random walks for rapidly mixing chains Reviewed

    Takeharu Shiraga, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita

    Proceedings of the 9th Hungarian-Japanese Symposium|rn|on Discrete Mathematics and Its Applications   32 ( 3 )   88 - 91   2015.6

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:Hungarian-Japanese Symposium|rn|on Discrete Mathematics and Its Applications  

    DOI: 10.1137/16M1087667

    researchmap

  • Fast Consensus for Voting on General Expander Graphs Reviewed

    Colin Cooper, Robert Elsaesser, Tomasz Radzik, Nicolas Rivera, Takeharu Shiraga

    DISTRIBUTED COMPUTING (DISC 2015)   9363   248 - 262   2015

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:SPRINGER INT PUBLISHING AG  

    Distributed voting is a fundamental topic in distributed computing. In the standard model of pull voting, at each step every vertex chooses a neighbour uniformly at random and adopts its opinion. The voting is completed when all vertices hold the same opinion. In the simplest case, each vertex initially holds one of two different opinions. This partitions the vertices into arbitrary sets A and B. For many graphs, including regular graphs and irrespective of their expansion properties, if both A and B are sufficiently large sets, then pull voting requires Omega(n) expected steps, where n is the number of vertices of the graph.
    In this paper we consider a related class of voting processes based on sampling two opinions. In the simplest case, every vertex v chooses two random neighbours at each step. If both these neighbours have the same opinion, then v adopts this opinion. Otherwise, v keeps its own opinion. Let G be a connected graph with n vertices and m edges. Let P be the transition matrix of a simple random walk on G with second largest eigenvalue lambda < 1/root 2. We show that if the initial imbalance in degree between the two opinions satisfies vertical bar d(A) - d(B)vertical bar/2m >= 2 lambda(2), then with high probability voting completes in O(log n) steps, and the opinion with the larger initial degree wins.
    The condition that lambda < 1/root 2 includes many classes of expanders, for example random d-regular graphs where d >= 10. If however 1/root 2 <= lambda(P) <= 1 - epsilon for a constant epsilon > 0, or only a bound on the conductance of the graph is known, the sampling process can be modified so that voting still provably completes in O(log n) steps with high probability. The modification uses two sampling based on probing to a fixed depth O(1/epsilon) from any vertex.
    In its most general form our voting process allows vertices to bias their sampling of opinions among their neighbours to achieve a desired outcome. This is done by allocating weights to edges.

    DOI: 10.1007/978-3-662-48653-5_17

    Web of Science

    researchmap

  • Coalescing walks on rotor-router systems Reviewed

    Colin Cooper, Tomasz Radzik, Nicolás Rivera, Takeharu Shiraga

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)   9439   444 - 458   2015

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:Springer Verlag  

    We consider the rotor-router mechanism for distributing particles in an undirected graph. If the last particle passing through a vertex v took an edge (v,u), then the next time a particle is at v, it will leave v along the next edge (v,w) according to a fixed cyclic order of edges adjacent to v. The system works in synchronized steps and when two or more particles meet at the same vertex, they coalesce into one particle. A k-particle configuration of such a system is stable, if it does not lead to any coalescing. For 2≤k≤n, we give the full characterization of stable k-particle configurations for cycles. We also show sufficient conditions for regular graphs with n vertices to admit n-particle stable configurations.

    DOI: 10.1007/978-3-319-25258-2_31

    Scopus

    researchmap

  • L-infinity-Discrepancy Analysis of Polynomial-Time Deterministic Samplers Emulating Rapidly Mixing Chains Reviewed

    Takeharu Shiraga, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita

    COMPUTING AND COMBINATORICS, COCOON 2014   8591   25 - 36   2014

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:SPRINGER-VERLAG BERLIN  

    Markov chain Monte Carlo (MCMC) is a standard technique to sample from a target distribution by simulating Markov chains. In an analogous fashion to MCMC, this paper proposes a deterministic sampling algorithm based on deterministic random walk, such as the rotorrouter model (a.k.a. Propp machine). For the algorithm, we give an upper bound of the point-wise distance (i.e., infinity norm) between the "distributions" of a deterministic random walk and its corresponding Markov chain in terms of the mixing time of the Markov chain. As a result, for uniform sampling of #P-complete problems, such as 0-1 knapsack solutions, linear extensions, matchings, etc., for which rapidly mixing chains are known, our deterministic algorithm provides samples with a "distribution" with a point-wise distance at most epsilon from the target distribution, in time polynomial in the input size and epsilon(-1).

    DOI: 10.1007/978-3-319-08783-2_3

    Web of Science

    researchmap

▼display all

MISC

  • 多項式時間決定的サンプラーの頂点誤差解析

    白髪丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    研究報告アルゴリズム(AL)   2014 ( 4 )   1 - 7   2014.9

     More details

    Language:Japanese   Publisher:一般社団法人情報処理学会  

    マルコフ連鎖モンテカルロ法 (MCMC 法) とは,マルコフ連鎖をシミュレートすることで所望の分布からサンプリングを行う手法である.本稿ではロータールーターモデル (Propp 機械) など 「ランダムウォークの脱乱択化」 に関する研究を応用し,マルコフ連鎖を模倣する決定的サンプリングアルゴリズムを提案する.そして,決定的サンプリングアルゴリズムと対応するマルコフ連鎖の分布の頂点誤差 (L∞ 距離) の解析を行い,マルコフ連鎖の混交時間に関する上界を与える.この上界を用いて,0-1 ナップサック解,線形順序拡大,マッチングなどの一様分布に急速混交するマルコフ連鎖が知られるいくつかの #P 完全問題に対し,決定的サンプリングアルゴリズムが所望の分布と頂点誤差が ε 以下の分布を,入力と ε-1 の多項式時間で出力する事を示す.

    CiNii Books

    researchmap

  • DS-1-6 DERANDOMIZING RAPIDLY MIXING CHAINS

    Shiraga Takeharu, Yamauchi Yukiko, Kijima Shuji, Yamashita Masafumi

    Proceedings of the IEICE General Conference   2014 ( 1 )   "S - 11"-"S-12"   2014.3

     More details

    Language:Japanese   Publisher:The Institute of Electronics, Information and Communication Engineers  

    CiNii Books

    researchmap

  • Deterministic Random Walks for Irrational Transition Probabilities (New Trends in Theoretical Computer Science)

    Shiraga Takeharu, Yamauchi Yukiko, Kijima Shuji, Yamashita Masafumi

    RIMS Kokyuroku   1849   96 - 99   2013.8

     More details

    Language:Japanese   Publisher:Kyoto University  

    CiNii Books

    researchmap

    Other Link: http://hdl.handle.net/2433/195102

  • 関数ルーターモデルによるハイパーキューブ上ランダムウォークの脱乱択化 (コンピュテーション)

    白髪 丈晴, 山内 由紀子, 来嶋 秀治, 山下 雅史

    電子情報通信学会技術研究報告 = IEICE technical report : 信学技報   113 ( 50 )   135 - 141   2013.5

     More details

    Language:Japanese   Publisher:一般社団法人電子情報通信学会  

    ランダムウォークの脱乱択化とは、決定的過程によってランダムウォークを模倣する試みである.トークンを隣接点へランダムに発射するランダムウォークに対して,グラフの各頂点上にあらかじめ隣接点の順番を決め,その順番に従ってトークンを発射するロータールーターモデルや,乱数の代わりに超一様分布列(low discrepancy sequence)を用いて隣接点にトークンを決定的に発射する関数ルーターモデルが提案されている.有理数の遷移確率のみを扱えるロータールーターモデルに対し,関数ルーターモデルは実数の遷移確率を扱えるという利点がある.本研究では,ハイパーキューブ上の単純ランダムウォークに関して,対応する関数ルーターモデルとの単一頂点誤差の頂点数の対数サイズの上界を与える.

    CiNii Books

    researchmap

  • 関数ルーターモデルによるハイパーキューブ上ランダムウォークの脱乱択化

    白髪丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    研究報告アルゴリズム(AL)   2013 ( 21 )   1 - 7   2013.5

     More details

    Language:Japanese   Publisher:一般社団法人情報処理学会  

    ランダムウォークの脱乱択化とは、決定的過程によってランダムウォークを模倣する試みである.トークンを隣接点へランダムに発射するランダムウォークに対して,グラフの各頂点上にあらかじめ隣接点の順番を決め,その順番に従ってトークンを発射するロータールーターモデルや,乱数の代わりに超一様分布列(low discrepancy sequence)を用いて隣接点にトークンを決定的に発射する関数ルーターモデルが提案されている.有理数の遷移確率のみを扱えるロータールーターモデルに対し,関数ルーターモデルは実数の遷移確率を扱えるという利点がある.本研究では,ハイパーキューブ上の単純ランダムウォークに関して,対応する関数ルーターモデルとの単一頂点誤差の頂点数の対数サイズの上界を与える.

    CiNii Books

    researchmap

  • Deterministic Random Walks for Irrational Transition Probabilities

    2012 ( 2 )   1 - 7   2012.10

     More details

    Language:Japanese  

    CiNii Books

    researchmap

▼display all

Presentations

  • 確率的分散投票モデルの収束時間解析

    白髪丈晴

    数理計画問題に対する理論とアルゴリズムの研究  2019.8 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Analyses of the cover time of deterministic random walks International conference

    Takeharu Shiraga

    The 21st Conference of the International Federation of Operational Research Societies (IFORS 2017)  ( Quebec, Canada )   2017.7 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • 一般のマルコフ連鎖と決定的過程の総変動誤差

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    日本オペレーションズ・リサーチ学会秋季研究発表会  2016.9 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 一般の遷移確率に対する決定性ランダムウォークの全訪問時間

    白髪 丈晴

    日本応用数理学会2016年度年会  2016.9 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 一般の遷移確率に対する関数ルーターモデルの全訪問時間

    白髪 丈晴

    研究報告アルゴリズム(AL)  2016.6 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 多項式時間決定的サンプラーの頂点誤差解析

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    研究報告アルゴリズム(AL)  2014.9 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • An Analysis of Deterministic Random Walks on Hypercubes using the Krawtchouk Polynomial

    Takeharu Shiraga, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita

    The 20th Conference of the International Federation of Operational Research Societies (IFORS 2014)  2014.7 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • 高速混交するマルコフ連鎖の脱乱択化

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    2014年電子情報通信学会総合大会  2014.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • ランダムウォークの脱乱択化

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    2013年度確率モデルシンポジウム  2014.1 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 関数ルーターモデルによるハイパーキューブ上ランダムウォークの脱乱択化

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    研究報告アルゴリズム(AL)  2013.5 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 関数ルーターモデルの提案

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    2013年電子情報通信学会総合大会  2013.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 無理数の遷移確率をもつランダムウォークの脱乱択化

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    日本オペレーションズ・リサーチ学会春季研究発表会  2013.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 無理数遷移確率を許すランダムウォークの脱乱択化

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    数理解析研究所講究録  2013.1 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 無理数遷移確率ランダムウォークの脱乱択化

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    研究報告アルゴリズム(AL)  2012.11 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • ロータールーターモデルの設計手法の提案

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    情報処理学会研究報告(火の国情報シンポジウム2012)  2012.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • ロータールーターモデルの周期性について

    白髪 丈晴, 山内由紀子, 来嶋秀治, 山下雅史

    平成23年度電気関係学会九州支部連合大会  2011.9 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

▼display all

Awards

  • 研究賞奨励賞

    2019.9   日本オペレーションズ・リサーチ学会  

  • 若手優秀講演賞

    2017.6   THE JAPAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS   一般の遷移確率に対する決定性ランダムウォークの全訪問時間

  • 優秀発表賞

    2016.5   日本オペレーションズ・リサーチ学会研究部会「最適化の基盤とフロンティア」   一般の遷移確率を持つマルコフ連鎖の脱乱択化

  • 優秀発表賞

    2015.5   日本オペレーションズ・リサーチ学会研究部会「最適化の基盤とフロンティア」   一般グラフ上での局所多数決モデルの解析

  • コンピュータサイエンス領域奨励賞

    2014.9   情報処理学会   関数ルーターモデルによるハイパーキューブ上ランダムウォークの脱乱択化

  • 山下記念研究賞

    2014.3   情報処理学会   無理数遷移確率ランダムウォークの脱乱択化

  • 優秀発表賞

    2013.6   日本OR 学会「最適化の理論と応用」研究部会   無理数の遷移確率を含むランダムウォークの脱乱択化

▼display all

Research Projects

  • 非線形なopinion dynamicsに対する収束時間解析

    2019.4 - 2022.3

    中央大学  若手研究 

    白髪丈晴

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount: \2700000

    researchmap

  • マルコフ連鎖解析に基づく非正則・動的ネットワーク上負荷分散アルゴリズムの理論保証

    2017.8 - 2019.3

    文部科学省  科学研究費補助金(日本学術振興会・文部科学省)-若手研究(スタートアップ) 

    白髪丈晴

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount: \2730000

    researchmap

  • マルコフ連鎖の脱乱択化:決定性近似アルゴリズム設計に対する新しい汎用手法の開発

    Grant number:15J03840  2015.4 - 2017.3

    日本学術振興会  科学研究費助成事業  特別研究員奨励費  九州大学

    白髪 丈晴

      More details

    Grant amount: \1900000 ( Direct Cost: \1900000 )

    本年度はマルコフ連鎖の脱乱択化研究のなかで, 全訪問時間研究において顕著な成果をあげることに成功した.
    これまで行ってきた研究は, 各時刻ごとのトークン配置の誤差解析であり, 即ちマルコフ連鎖(確率過程)とそれに類似する決定性過程の``空間平均''の誤差解析であった. 本年度はこの空間平均にあたるトークン分布の誤差解析を, ``時間平均''の誤差解析へ拡張することに成功した. 具体的には, 確率過程, 決定性過程のトークンがある頂点を訪問した回数(訪問頻度)の誤差の上界の導出に成功した. 既存研究でも時間平均にあたる訪問頻度の誤差解析は行われていたが, グラフ上の1トークン単純ランダムウォークに対応するものにとどまっており, 一般の可逆な遷移確率かつ複数トークンまで拡張に成功した本研究の意義は大きい.
    特に, 訪問頻度の解析手法を用いることで, 一般の遷移確率を持つマルコフ連鎖に類似する決定性過程の, 全訪問時間の上界を得ることに成功した. これは一般の遷移確率に対する初の全訪問時間の上界であり, 本年度にこの成果をまとめ, 国際会議に採択され発表済みである. 更に, 本成果は既存の複数トークン単純ランダムウォークに対応する決定性過程のものを改善している.
    全訪問時間解析を更に洗練させることにも成功しつつあり, 特定の構造上ではあるが, 遷移確率を工夫することによるランダムウォークの高速化アルゴリズムに習い, それを模倣する決定性過程の全訪問時間が通常の単純なものよりも高速化出来ることを示しており, 29年度, 国際会議に投稿予定である.
    このように, 本年度の研究でこれまで行ってきた空間平均の解析と時間平均の解析が研ぎ澄まされ, MCMC法の脱乱択化へ大きな進歩が見られた.

    researchmap

Committee Memberships

  • 2018.4 -  

    日本オペレーションズ・リサーチ学会   Journal of the Operations Research Society of Japan 論文誌編集委員 編集幹事