2024/06/14 更新

写真a

サカモト コウスケ
坂本 康輔
SAKAMOTO Kosuke
所属
理工学部 助教C
連絡先
メールによる問い合わせは《こちら》から
外部リンク

学位

  • 博士(工学) ( 東京大学 )

  • 修士(工学) ( 早稲田大学 )

学歴

  • 2021年3月
     

    東京大学   工学系研究科   電気系工学専攻   博士後期   修了

  • 2018年3月
     

    早稲田大学   基幹理工学研究科   機械科学専攻   修士   修了

  • 2016年3月
     

    早稲田大学   基幹理工学部   機械科学・航空学科   卒業

経歴

  • 2021年4月 -  

    中央大学理工学部助教

所属学協会

  • 2023年12月 - 現在

    計測自動制御学会

  • 2020年7月 - 現在

    Institute of Electrical and Electronics Engineers (IEEE)

  • 2019年5月 - 現在

    日本ロボット学会

研究キーワード

  • ロボティクス

  • 強化学習

  • テラメカニクス

  • 経路計画

  • 行動制御

  • 自律移動ロボット

  • 群知能

研究分野

  • 情報通信 / ロボティクス、知能機械システム

  • 情報通信 / 機械力学、メカトロニクス

  • フロンティア(航空・船舶) / 航空宇宙工学  / 航空宇宙工学

  • ものづくり技術(機械・電気電子・化学工学) / 制御、システム工学  / ロボティクス,機械学習,人工知能,航空宇宙工学

論文

  • Exploration System for Distributed Swarm Robots Using Probabilistic Action Decisions 査読

    Toui Sato, Kosuke Sakamoto, Takao Maeda, Yasuharu Kunii

    Distributed Autonomous Robotic Systems   453 - 465   2024年2月

     詳細を見る

    掲載種別:論文集(書籍)内論文   出版者・発行元:Springer Nature Switzerland  

    DOI: 10.1007/978-3-031-51497-5_32

    researchmap

  • A Random Walk-Based Stochastic Distributed Exploration Algorithm for Low-Cost Swarm Robots 査読

    Kosuke Sakamoto, Toui Sato, Kiyohisa Izumi, Tomoki Kato, Takao Maeda, Yasuharu Kunii

    2024 IEEE/SICE International Symposium on System Integration (SII)   2024年1月

     詳細を見る

    担当区分:筆頭著者   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:IEEE  

    DOI: 10.1109/sii58957.2024.10417163

    researchmap

  • 群ロボットによる広域分散面探査のための確率的存在密度制御 査読

    佐藤 冬唯, 坂本 康輔, 前田 孝雄, 國井 康晴, 戸田 武, 加藤 裕基

    日本ロボット学会誌   41 ( 10 )   869 - 880   2023年12月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.7210/jrsj.41.869

    researchmap

  • A MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion 査読

    Kosuke Sakamoto, Yasuharu Kunii

    IEEE Access   11   66694 - 66712   2023年

     詳細を見る

    担当区分:筆頭著者   掲載種別:研究論文(学術雑誌)   出版者・発行元:Institute of Electrical and Electronics Engineers ({IEEE})  

    DOI: 10.1109/ACCESS.2023.3291401

    researchmap

  • Hopping path planning in uncertain environments for planetary explorations 査読

    Kosuke Sakamoto, Takashi Kubota

    ROBOMECH Journal   9 ( 4 )   2022年2月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   出版者・発行元:Springer Open  

    DOI: 10.1186/s40648-022-00219-7

    J-GLOBAL

    researchmap

    その他リンク: https://link.springer.com/article/10.1186/s40648-022-00219-7/fulltext.html

  • 跳躍移動機構における脚の伸張軌道が飛翔結果に及ぼす影響 査読

    峰岸 理樹, 前田 孝雄, 坂本 康輔, 國井 康晴

    日本ロボット学会誌   40 ( 7 )   643 - 646   2022年

     詳細を見る

    記述言語:日本語   出版者・発行元:一般社団法人 日本ロボット学会  

    DOI: 10.7210/jrsj.40.643

    CiNii Research

    J-GLOBAL

    researchmap

  • Evaluation of hopping robot performance with novel foot pad design on natural terrain for hopper development 査読

    Kosuke Sakamoto, Masatsugu Otsuki, Takao Maeda, Kent Yoshikawa, Takashi Kubota

    IEEE Robotics and Automation Letters   4 ( 4 )   3294 - 3301   2019年10月

     詳細を見る

    担当区分:筆頭著者   掲載種別:研究論文(学術雑誌)   出版者・発行元:Institute of Electrical and Electronics Engineers ({IEEE})  

    © 2016 IEEE. This letter presents the hopping performance evaluation on three types of terrains and novel foot pad designs for efficient traverse of hopping rovers. Hopping rovers, called Hopper, are expected to explore scientific richness areas where wheeled vehicles are hard to traverse. In order to succeed in the robotic planetary exploration, optimization and efficient designs of rovers are essential. Almost all planetary surfaces are covered with sand, called regolith, which makes hopping efficiency bad. In this letter, we discover the hopping performance on three kinds of terrains. Moreover, we also propose the method of increasing hopping performance on soft soil. Inspired by the conventional wheeled vehicle design, treads, called grouser, are installed on the bottom of the foot pad. While grousers are effective on hard ground and soft soil, they are ineffective on bilayer terrain. Bilayer means that hard ground is covered with thin regolith. And the other novel grouser shape is designed based on the soil interaction model using a multi-objective evolutionary algorithm. The proposed design improves the hopping performance on soft soil in comparison with the straight grouser.

    DOI: 10.1109/LRA.2019.2926222

    Scopus

    researchmap

  • A Mechanical Design for Efficient Hopping of Planetary Rover on Soft Soil 査読

    Kosuke Sakamoto, Masatsugu Otsuki, Takao Maeda, Kent Yoshikawa, Takashi Kubota

    2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)   2018-July   1092 - 1097   2018年7月

     詳細を見る

    担当区分:筆頭著者   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:IEEE  

    © 2018 IEEE. This paper presents a novel mechanical design for efficient traverse of hopping rovers. In order to continue the exploration of planetary environment without any human help, optimizations and efficient designs of rovers are essential. In particular, improving robustness and decreasing energy consumption are crucial aspects of rovers design. Hopping efficiency on sandy surfaces is strikingly worse than on hard ground, because such soil is deformed and easily causes slip. The purpose of this paper is to develop a novel mechanical design which can get enough friction from granular media. First, the effects of soft soil for hopping are studied by comparing with hopping on hard ground in terms of energy. Next, a novel foot pad design for hopping on planetary terrain is proposed. Inspired by the conventional wheeled vehicle design, treads, called grouser, are installed for the bottom of the proposed foot pad. The effectiveness of the proposed design is validated through experimental evaluation.

    DOI: 10.1109/aim.2018.8452427

    Scopus

    researchmap

  • Hopping motion estimation on soft soil by resistive force theory 査読

    Kosuke Sakamoto, Masatsugu Otsuki, Takashi Kubota, Yoshiki Morino

    Journal of Robotics and Mechatronics   29 ( 5 )   895 - 901   2017年10月

     詳細を見る

    担当区分:筆頭著者   掲載種別:研究論文(学術雑誌)  

    © 2017, Fuji Technology Press. All rights reserved. Various planetary terrains or asteroids, which are hard to traverse with wheeled platforms, are expected to be explored. Bekker’s model cannot be applied to estimate the motions of rovers without wheels, such as the hopping rover (hopper). In this paper, the resistive force theory (RFT) approach is introduced. This approach is not based on Bekker’s model, and is expected to apply to any platform. However, this RFT approach only applies to static or quasi-static motion, such as in the case of slow motions. To apply the RFT approach to dynamic motions, such as hopping, the effect of velocity as a dynamic variable is also studied. Through the hopping experiments, the effectiveness of RFT with the velocity-term approach is investigated and compared to the RFT approach.

    DOI: 10.20965/jrm.2017.p0895

    Scopus

    researchmap

  • A new mechanism of smart jumping robot for lunar or planetary satellites exploration 査読

    Kent Yoshikawa, Masatsugu Otsuki, Takashi Kubota, Takao Maeda, Masataka Ushijima, Satoshi Watanabe, Kousuke Sakamoto, Yasuharu Kunii, Kazunoti Umeda

    2017 IEEE Aerospace Conference   2017年3月

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:IEEE  

    © 2017 IEEE. For planetary exploration, small robots of just a few kilograms installed in the main spacecraft have a lot of advantages. Small robots can provide us with a wide range of exploration opportunities by using multi-robots, technical demonstrations, and science missions which require detailed data acquisition. There are not only mission advantages, but they can also be developed in a short period of time and at a low cost. MINERVA, MINERVA II, MASCOT are examples which are installed in the main spacecraft for surface exploration. In order to move on the surface of a "low gravity" object, like the Moon by a small robot, there are several options of locomotion, such as jumping, wheels, and legs. Wheel locomotion cannot step over obstacles where the size is bigger than the wheel radius, and the structure of leg locomotion is a very complicated piece of machinery and requires a lot of actuators. However, jumping locomotion is capable of moving a long distance by one action and the number of actuators required for jumping capability is very small. In addition, it can travel a longer distance on a planet or satellite which has a gravity lower than the Earth. For instance, it can jump 6 times longer on the Moon than on the Earth. To realize jumping locomotion for small robots in a low gravity environment, the mechanism has to meet the following functional requirements. (1) it can charge the required jumping energy, (2) it can release the energy instantly, (3) it can change the amount of the energy needed to control jumping distance, (4) it doesn't consume resources such as fuel and should be able to repeat the movement, (5) it has a ground contact part to apply power, (6) the size should be small and the weight should be small (7) it can move in a space environment (vacuum, high radiation). We studied some jumping mechanism concepts to meet these requirements. Our design of the mechanism uses springs to charge the energy and they are supported and connected to the shaft structure. A jumping pad is attached to the end of the structure and pushes the ground and robot so it can jump from the ground. For actuation, only one motor is used. In our mechanism, a one-way clutch is used to change from energy charge mode to release mode. This mode change is executed by changing the direction of motor rotation. After jumping, it can change the mode to energy charge mode again. The authors have developed a research model of the jumping rover which the jumping mechanism is mounted on. This model is developed for a lunar exploration mission. Science mission equipment mock-ups and wheels are also mounted on the model. The wheel is used to control the jumping direction. In this paper, our design of the jumping mechanism, development of a research model, and test results are presented in detail.

    DOI: 10.1109/aero.2017.7943807

    Scopus

    researchmap

▼全件表示

MISC

  • 月面特異観測対象検出のための色 相特徴を考慮した Saliency map 生成処理の最適化

    峰岸 理樹, 坂本 康輔, 前田 孝雄, 國井 康晴, 吉光徹雄

    第 66 回宇宙科学技術連合講演会   66th   2022年10月

     詳細を見る

  • 移動ロボットのための複数情報を組み合わせた追跡対象を特定する手法の提案

    篠田祥吾, 坂本康輔, 國井康晴

    日本ロボット学会学術講演会予稿集(CD-ROM)   40   2022年10月

     詳細を見る

  • 群ロボットの存在領域制御のための発光周波数解析による群中心マーカ認識のロバスト化及び高速化

    塚本翔, 泉清久, 前田孝雄, 坂本康輔, 國井康晴, 戸田武

    日本ロボット学会学術講演会予稿集(CD-ROM)   40   2022年10月

     詳細を見る

  • 群誘導における衝突ストレスを用いた確率的な障害物回避アルゴリズムの検討

    安藤拓眞, 坂本康輔, 國井康晴, 前田孝雄, 宮口幹太

    日本ロボット学会学術講演会予稿集(CD-ROM)   40   2022年10月

     詳細を見る

  • Saliency mapを用いた月面環境における特異対象検出の検討

    峰岸 理樹, 前田 孝雄, 坂本 康輔, 國井 康晴

    ロボティクス・メカトロニクス講演会講演概要集   2022   1P1-I03   2022年

     詳細を見る

    記述言語:日本語   出版者・発行元:一般社団法人 日本機械学会  

    DOI: 10.1299/jsmermd.2022.1p1-i03

    CiNii Research

    J-GLOBAL

    researchmap

  • 跳躍移動機構における脚の伸張軌道が飛翔結果に及ぼす影響

    峰岸理樹, 前田孝雄, 坂本康輔, 國井康晴

    日本ロボット学会誌   40 ( 7 )   2022年

     詳細を見る

  • 未知環境における不確実性を考慮した跳躍経路計画

    坂本康輔, 久保田孝

    ロボティクスシンポジア予稿集   26th (CD-ROM)   2021年

     詳細を見る

  • 惑星探査のための強化学習を用いた車輪-跳躍ハイブリッド移動ロボットの行動計画

    坂本康輔, 久保田孝

    日本ロボット学会学術講演会予稿集(CD-ROM)   38th   2020年

     詳細を見る

  • 跳躍ロボットによる惑星探査の検討

    坂本康輔, 久保田孝

    日本ロボット学会学術講演会予稿集(CD-ROM)   37th   2019年

     詳細を見る

▼全件表示

講演・口頭発表等

  • Dynamic Path Planning for Hopping Robot in Unknown Environment

    Kosuke Sakamoto, Takashi Kubota

    The 31th Workshop on JAXA Astrodynamics and Flight Mechanics  2021年7月 

     詳細を見る

    会議種別:シンポジウム・ワークショップ パネル(公募)  

    researchmap

  • 未知環境における不確実性を考慮した跳躍経路計画

    坂本康輔, 久保田孝

    第26回ロボティクスシンポジア  2021年3月 

     詳細を見る

    会議種別:口頭発表(一般)  

    researchmap

  • 惑星探査のための強化学習を用いた車輪-跳躍ハイブリッド移動ロボットの行動計画

    坂本康輔, 久保田孝

    第38回日本ロボット学会学術講演会  2020年10月 

     詳細を見る

    会議種別:口頭発表(一般)  

    researchmap

  • Evaluation of Hopping Robot Locomotion for Planetary Exploration by 3D Simulator 国際会議

    Kosuke Sakamoto, Auke Jan Ijspeer, Takashi Kubota

    International Symposium on Artificial Intelligence, Robotics and automation in Space  2020年9月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(一般)  

    researchmap

  • Evaluation of Hopping Robot Locomotion for Planetary Exploration by 3D Simulator

    Kosuke Sakamoto, Takashi Kubota

    The 30th Workshop on JAXA Astrodynamics and Flight Mechanics  2020年7月 

     詳細を見る

    会議種別:シンポジウム・ワークショップ パネル(公募)  

    researchmap

  • Evaluation of Hopping Robot Performance with Novel Foot Pad Design on Natural Terrain for Hopper Development 国際会議

    Kosuke Sakamoto, Masatsugu Otsuki, Takao Maeda, Kent Yoshikawa, Takashi Kubota

    IEEE/RSJ International Conference on Intelligent Robots and Systems  2019年11月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(一般)  

    researchmap

  • 跳躍ロボットによる惑星探査の検討

    坂本康輔, 久保田孝

    第37回日本ロボット学会学術講演会  2019年10月 

     詳細を見る

    会議種別:口頭発表(一般)  

    researchmap

  • Hopping Path Planning for Planetary Exploration

    Kosuke Sakamoto, Takashi Kubota

    The 29th Workshop on JAXA Astrodynamics and Flight Mechanics  2019年7月 

     詳細を見る

    会議種別:シンポジウム・ワークショップ パネル(公募)  

    researchmap

  • A mechanical design for efficient hopping of planetary rover on soft soil 国際会議

    Kosuke Sakamoto, Masatsugu Otsuki, Takao Maeda, Kent Yoshikawa, Takashi Kubota

    IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM  2018年8月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(一般)  

    © 2018 IEEE. This paper presents a novel mechanical design for efficient traverse of hopping rovers. In order to continue the exploration of planetary environment without any human help, optimizations and efficient designs of rovers are essential. In particular, improving robustness and decreasing energy consumption are crucial aspects of rovers design. Hopping efficiency on sandy surfaces is strikingly worse than on hard ground, because such soil is deformed and easily causes slip. The purpose of this paper is to develop a novel mechanical design which can get enough friction from granular media. First, the effects of soft soil for hopping are studied by comparing with hopping on hard ground in terms of energy. Next, a novel foot pad design for hopping on planetary terrain is proposed. Inspired by the conventional wheeled vehicle design, treads, called grouser, are installed for the bottom of the proposed foot pad. The effectiveness of the proposed design is validated through experimental evaluation.

    researchmap

  • A Study on Foot Pad Design of Hopping Rover Based on Soil Features

    Kosuke Sakamoto, Masatsugu Otsuki, Takao Maeda, Kent Yoshikawa, Takashi Kubota

    The 28th Workshop on JAXA Astrodynamics and Flight Mechanics  2018年7月 

     詳細を見る

    会議種別:シンポジウム・ワークショップ パネル(公募)  

    researchmap

  • A new mechanism of smart jumping robot for lunar or planetary satellites exploration 国際会議

    Kent Yoshikawa, Masatsugu Otsuki, Takashi Kubota, Takao Maeda, Masataka Ushijima, Satoshi Watanabe, Kousuke Sakamoto, Yasuharu Kunii, Kazunoti Umeda

    IEEE Aerospace Conference Proceedings  2017年6月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(一般)  

    © 2017 IEEE. For planetary exploration, small robots of just a few kilograms installed in the main spacecraft have a lot of advantages. Small robots can provide us with a wide range of exploration opportunities by using multi-robots, technical demonstrations, and science missions which require detailed data acquisition. There are not only mission advantages, but they can also be developed in a short period of time and at a low cost. MINERVA, MINERVA II, MASCOT are examples which are installed in the main spacecraft for surface exploration. In order to move on the surface of a "low gravity" object, like the Moon by a small robot, there are several options of locomotion, such as jumping, wheels, and legs. Wheel locomotion cannot step over obstacles where the size is bigger than the wheel radius, and the structure of leg locomotion is a very complicated piece of machinery and requires a lot of actuators. However, jumping locomotion is capable of moving a long distance by one action and the number of actuators required for jumping capability is very small. In addition, it can travel a longer distance on a planet or satellite which has a gravity lower than the Earth. For instance, it c

    researchmap

  • RFT-based analysis of hopping rover on soft soil for planetary exploration 国際会議

    Kosuke Sakamoto, Masatsugu Otsuki, Takashi Kubota, Yoshiki Morino

    International Symposium on Artificial Intelligence, Robotics and automation in Space  2016年6月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(一般)  

    researchmap

▼全件表示

共同研究・競争的資金等の研究課題

  • ロボット間通信を用いない未知環境における小型群ロボットの群行動戦略

    研究課題/領域番号:24K17245  2024年4月 - 2027年3月

    日本学術振興会  科学研究費助成事業  若手研究  中央大学

    坂本 康輔

      詳細を見る

    配分額:4810000円 ( 直接経費:3700000円 、 間接経費:1110000円 )

    researchmap

  • 土壌相互作用に基づく環境適応型跳躍移動手法に関する研究

    研究課題/領域番号:19J10278  2019年4月 - 2021年3月

    日本学術振興会  科学研究費助成事業 特別研究員奨励費  特別研究員奨励費  東京大学

    坂本 康輔

      詳細を見る

    配分額:1700000円 ( 直接経費:1700000円 )

    申請者は昨年度より引き続きスイスEPFLにて3Dシミュレーションを用いた跳躍ロボットの行動戦略アルゴリズムの構築に取り組んだ.本研究では,惑星環境をを模擬したシミュレータ上において,跳躍及び車輪を用いてロボットが目的地に効率よく迎えるようなアルゴリズムの構築を目標としている.惑星環境は事前にわかっていることが少なく未知な部分が多いため,不確実性を考慮しつつ,ロバストな行動計画が必要である.本研究では,強化学習を用いて不整地における跳躍ロボットの行動アルゴリズムを生成した.これにより,どのように跳躍すれば不整地で効率よく移動できるかの指針を得ることができる.今後は得られた行動パターンを元に実際のロボットを用いて屋外環境で試験を行い,アルゴリズムの有用性や,改善点などを調査していく.また,探査ロボットの安全性と痕跡調査を両立するためには,行動の不確実性を最小化する行動戦略が必須である.そこで不確実性を確率的に表し,砂地や起伏 での跳躍のリスクと痕跡発見のリターンを「報酬」として定量的に表現することでリスクとリターンのトレードオフを考慮した行動戦略を構築した.MDPと呼ば れる手法を用いて不確実性を最小化し,報酬を最大化するような跳躍経路を生成するアルゴリズムを提案した.その際に,ロボットの位置や姿勢,次の行動がどの程度安全であるかと,その行動により周囲の環境をどの程度認識し,未知度を減らせるかを評価関数として提案した.これにより,ロボットの現状に合わせた様々な経路を生成することができ,目的に応じたロボットの行動戦略を構築することができる.

    researchmap

担当経験のある科目(授業)

  • 電気電子情報通信実験

    2021年4月 - 現在   機関名:中央大学