Updated on 2024/11/06

写真a

 
GOTOH Jun-ya
 
Organization
Faculty of Science and Engineering Professor
Other responsible organization
Data Science for Business Innovation Course of Graduate School of Science and Engineering, Master's Program
Data Science for Business Innovation Course of Graduate School of Science and Engineering, Doctoral Program
Contact information
The inquiry by e-mail is 《here
Profile
Right after earning his doctoral degree of engineering at Tokyo Institute Technology in 2001, Dr. Jun-ya Gotoh joined in the University of Tsukuba as an assistant professor, serving the school for research and teaching. In 2007 he joined in the Department of Industrial and Systems Engineering of Chuo University as an associate professor and became a full professor in 2015. His primary academic interests are in the area of mathematical optimization, especially in applications of continuous (convex/nonconvex) optimization methods to the problems arising from data analysis (including machine learning) and financial engineering.
External link

Degree

  • Ph.D (Engineering) ( Tokyo Institute of Technology )

  • Master (Engineering) ( Tokyo Institute of Technology )

Education

  • 2001.3
     

    Tokyo Institute of Technology   Graduate School of Decision Science and Technology   doctor course   completed

  • 1998.3
     

    Tokyo Institute of Technology   Graduate School of Decision Science and Technology   master course   completed

  • 1996.3
     

    Tokyo Institute of Technology   Faculty of Engineering   Department of Social Engineering   graduated

Research History

  • 2021.4 -  

    Chuo University   Department of Data Science for Business Innovation   Professor

  • 2015.4 - 2021.3

    Chuo University   "Department of Industrial and Systems Engineering, Faculty of Science and Engineering"   Professor

  • 2007.4 - 2015.3

    Chuo University   "Department of Industrial and Systems Engineering, School of Science and Engineering"   Associate Professor

  • 2007.4 - 2015.3

    Associate Professor, School of Science and Engineering, Chuo University

  • 2004.4 - 2007.3

    University of Tsukuba   Graduate School of Systems and Information Engineering   Assistant Professor

  • 2001.4 - 2004.3

    University of Tsukuba   College of Policy and Planning Sciences   Assistant Professor

  • 2000.1 - 2001.3

    Japan Society for the Promotion of Science   Research Fellowships for Young Scientists (DC2)

▼display all

Professional Memberships

  • The Operations Research Society of Japan

  • Japanese Association of Financial Econometrics and Engineering (JAFEE)

  • INFORMS, Regular Member

  • Japanese Society of Applied Statistics

Research Interests

  • "continuous optimization (global optimization, fractional program)"

  • "decision making under uncertainty (risk measure, robust optimization)"

  • "data analysis (machine learning, sparse optimization)"

  • "financial optimization (portfolio selection, credit risk scoring)"

Research Areas

  • Social Infrastructure (Civil Engineering, Architecture, Disaster Prevention) / Social systems engineering  / Operations Research / Mathematical Optimization / Data Analysis / Machine Learning / Financial Engineering

  • Social Infrastructure (Civil Engineering, Architecture, Disaster Prevention) / Safety engineering  / Operations Research / Mathematical Optimization / Data Analysis / Machine Learning / Financial Engineering

Papers

  • Pursuit of the Cluster Structure of Network Lasso: Recovery Condition and Non-convex Extension Reviewed

    Shotaro Yagishita, Jun-ya Gotoh

    Journal of Machine Learning Research   25 ( 21 )   1 - 42   2024.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    researchmap

  • A Data-Driven Approach to Beating SAA Out of Sample Reviewed

    Jun-ya Gotoh, Michael Jong Kim, Andrew E. B. Lim

    Operations Research   2023.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1287/opre.2021.0393

    researchmap

  • Calibration of Distributionally Robust Empirical Optimization Models Reviewed

    Jun‐ya Gotoh, Michael Jong Kim, Andrew E. B. Lim

    Operations Research   2021.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:INFORMS  

    DOI: 10.1287/opre.2020.2041

    researchmap

  • Robust empirical optimization is almost the same as mean–variance optimization Reviewed

    Jun-ya Gotoh, Michael Jong Kim, Andrew E.B. Lim

    Operations Research Letters   46 ( 4 )   448 - 452   2018.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier B.V.  

    We formulate a distributionally robust optimization problem where the deviation of the alternative distribution is controlled by a ϕ-divergence penalty in the objective, and show that a large class of these problems are essentially equivalent to a mean–variance problem. We also show that while a “small amount of robustness” always reduces the in-sample expected reward, the reduction in the variance, which is a measure of sensitivity to model misspecification, is an order of magnitude larger.

    DOI: 10.1016/j.orl.2018.05.005

    Scopus

    researchmap

  • DC formulations and algorithms for sparse optimization problems. Reviewed

    Jun-ya Gotoh, Akiko Takeda, Katsuya Tono

    Mathematical Programming   169 ( 1 )   141 - 176   2018

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer  

    DOI: 10.1007/s10107-017-1181-0

    researchmap

  • Support vector machines based on convex risk functions and general norms Reviewed

    Jun-ya Gotoh, Stan Uryasev

    Annals of Operations Research   249 ( 1-2 )   301 - 328   2017.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER  

    This paper studies unified formulations of support vector machines (SVMs) for binary classification on the basis of convex analysis, especially, convex risk functions theory, which is recently developed in the context of financial optimization. Using the notions of convex empirical risk and convex regularizer, a pair of primal and dual formulations of the SVMs are described in a general manner. With the generalized formulations, we discuss reasonable choices for the empirical risk and the regularizer on the basis of the risk function's properties, which are well-known in the financial context. In particular, we use the properties of the risk function's dual representations to derive multiple interpretations. We provide two perspectives on robust optimization modeling, enhancing the known facts: (1) the primal formulation can be viewed as a robust empirical risk minimization; (2) the dual formulation is compatible with the distributionally robust modeling.

    DOI: 10.1007/s10479-016-2326-x

    Web of Science

    researchmap

  • Two pairs of families of polyhedral norms versus -norms: proximity and applications in optimization Reviewed

    Jun-ya Gotoh, Stan Uryasev

    MATHEMATICAL PROGRAMMING   156 ( 1-2 )   391 - 431   2016.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER HEIDELBERG  

    This paper studies four families of polyhedral norms parametrized by a single parameter. The first two families consist of the CVaR norm (which is equivalent to the D-norm, or the largest- norm) and its dual norm, while the second two families consist of the convex combination of the - and -norms, referred to as the deltoidal norm, and its dual norm. These families contain the - and -norms as special limiting cases. These norms can be represented using linear programming (LP) and the size of LP formulations is independent of the norm parameters. The purpose of this paper is to establish a relation of the considered LP-representable norms to the -norm and to demonstrate their potential in optimization. On the basis of the ratio of the tight lower and upper bounds of the ratio of two norms, we show that in each dual pair, the primal and dual norms can equivalently well approximate the - and -norms, respectively, for satisfying . In addition, the deltoidal norm and its dual norm are shown to have better proximity to the -norm than the CVaR norm and its dual. Numerical examples demonstrate that LP solutions with optimized parameters attain better approximation of the -norm than the - and -norms do.

    DOI: 10.1007/s10107-015-0899-9

    Web of Science

    researchmap

  • Robust portfolio techniques for mitigating the fragility of CVaR minimization and generalization to coherent risk measures Reviewed

    Gotoh, Jun-Ya, Shinozaki, Keita, Takeda, Akiko

    Quantitative Finance   13 ( 10 )   1621 - 1635   2013.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Taylor \& Francis  

    researchmap

  • Simultaneous pursuit of out-of-sample performance and sparsity in index tracking portfolios Reviewed

    Akiko Takeda, Mahesan Niranjan, Jun-ya Gotoh, Yoshinobu Kawahara

    Computational Management Science   10 ( 1 )   21 - 49   2013

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer  

    Index tracking is a passive investment strategy in which a fund (e. g., an ETF: exchange traded fund) manager purchases a set of assets to mimic a market index. The tracking error, i. e., the difference between the performances of the index and the portfolio, may be minimized by buying all the assets contained in the index. However, this strategy results in a considerable transaction cost and, accordingly, decreases the return of the constructed portfolio. On the other hand, a portfolio with a small cardinality may result in poor out-of-sample performance. Of interest is, thus, constructing a portfolio with good out-of-sample performance, while keeping the number of assets invested in small (i. e., sparse). In this paper, we develop a tracking portfolio model that addresses the above conflicting requirements by using a combination of L0- and L2-norms. The L2-norm regularizes the overdetermined system to impose smoothness (and hence has better out-of-sample performance), and it shrinks the solution to an equally-weighted dense portfolio. On the other hand, the L0-norm imposes a cardinality constraint that achieves sparsity (and hence a lower transaction cost). We propose a heuristic method for estimating portfolio weights, which combines a greedy search with an analytical formula embedded in it. We demonstrate that the resulting sparse portfolio has good tracking and generalization performance on historic data of weekly and monthly returns on the Nikkei 225 index and its constituent companies. © 2012 Springer-Verlag Berlin Heidelberg.

    DOI: 10.1007/s10287-012-0158-y

    Scopus

    researchmap

  • Minimizing loss probability bounds for portfolio selection Reviewed

    Jun-ya Gotoh, Akiko Takeda

    European Journal of Operational Research   217 ( 2 )   371 - 380   2012.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCIENCE BV  

    In this paper, we derive a portfolio optimization model by minimizing upper and lower bounds of loss probability. These bounds are obtained under a nonparametric assumption of underlying return distribution by modifying the so-called generalization error bounds for the support vector machine, which has been developed in the field of statistical learning. Based on the bounds, two fractional programs are derived for constructing portfolios, where the numerator of the ratio in the objective includes the value-at-risk (VaR) or conditional value-at-risk (CVaR) while the denominator is any norm of portfolio vector. Depending on the parameter values in the model, the derived formulations can result in a nonconvex constrained optimization, and an algorithm for dealing with such a case is proposed. Some computational experiments are conducted on real stock market data, demonstrating that the CVaR-based fractional programming model outperforms the empirical probability minimization. (C) 2011 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.ejor.2011.09.012

    Web of Science

    researchmap

  • On the role of norm constraints in portfolio selection Reviewed

    Jun-ya Gotoh, Akiko Takeda

    Computational Management Science   8 ( 4 )   323 - 353   2011.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer  

    Several optimization approaches for portfolio selection have been proposed in order to alleviate the estimation error in the optimal portfolio. Among them are the norm-constrained variance minimization and the robust portfolio models. In this paper, we examine the role of the norm constraint in portfolio optimization from several directions. First, it is shown that the norm constraint can be regarded as a robust constraint associated with the return vector. Second, the reformulations of the robust counterparts of the value-at-risk (VaR) and conditional value-at-risk (CVaR) minimizations contain norm terms and are shown to be highly related to the ν-support vector machine (ν-SVM), a powerful statistical learning method. For the norm-constrained VaR and CVaR minimizations, a nonparametric theoretical validation is posed on the basis of the generalization error bound for the ν-SVM. Third, the norm-constrained approaches are applied to the tracking portfolio problem. Computational experiments reveal that the norm-constrained minimization with a parameter tuning strategy improves on the traditional norm-unconstrained models in terms of the out-of-sample tracking error. © 2011 Springer-Verlag.

    DOI: 10.1007/s10287-011-0130-2

    Scopus

    researchmap

  • Newsvendor solutions via conditional value-at-risk minimization Reviewed

    Jun-ya Gotoh, Yuichi Takano

    European Journal of Operational Research   179 ( 1 )   80 - 96   2007.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCIENCE BV  

    In this paper, we consider the minimization of the conditional value-at-risk (CVaR), a most preferable risk measure in financial risk management, in the context of the well-known single-period newsvendor problem, which is originally formulated as the maximization of the expected profit or the minimization of the expected cost. We show that downside risk measures including the CVaR are tractable in the problem due to their convexity, and consequently, under mild assumptions on the probability distribution of products' demand, we provide analytical solutions or linear programming (LP) formulation of the minimization of the CVaR measures defined with two different loss functions. Numerical examples are also exhibited, clarifying the difference among the models analyzed in this paper, and demonstrating the efficiency of the LP solutions. (c) 2006 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.ejor.2006.03.022

    Web of Science

    researchmap

  • A Linear Classification Model Based on Conditinal Geometric Score Reviewed

    Gotoh, J, Takeda, A

    Pacific Journal of Optimization   1 ( 2 )   277 - 296   2005.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Yokohama Publisher  

    researchmap

  • Bounding option prices by semidefinite programming: A cutting plane algorithm Reviewed

    Jun-ya Gotoh, Hiroshi Konno

    Management Science   48 ( 5 )   665 - 678   2002.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:INST OPERATIONS RESEARCH MANAGEMENT SCIENCES  

    In a recent article, Bertsimas and Popescu showed that a tight upper bound on a European-type call option price, given the first n moments of the distribution of the underlying security price, can be obtained by solving an associated semidefinite programming problem (SDP). The purpose of this paper is to improve and extend their results. We will show that a tight lower bound can be calculated by solving another SDP. Also, we will show that these problems can be solved very quickly by a newly developed cutting plane algorithm when n is less than six or seven.

    Web of Science

    researchmap

  • Maximization of the ratio of two convex quadratic functions over a polytope Reviewed

    Jun-ya Gotoh, Hiroshi Konno

    Computational Optimization and Applications   20 ( 1 )   43 - 60   2001.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:KLUWER ACADEMIC PUBL  

    In this paper, we will develop an algorithm for solving a quadratic fractional programming problem which was recently introduced by Lo and MacKinlay to construct a maximal predictability portfolio, a new approach in portfolio analysis. The objective function of this problem is defined by the ratio of two convex quadratic functions, which is a typical global optimization problem with multiple local optima. We will show that a well-designed branch-and-bound algorithm using (i) Dinkelbach's parametric strategy, (ii) linear overestimating function and (iii) omega -subdivision strategy can solve problems of practical size in an efficient way. This algorithm is particularly efficient for Lo-MacKinlay's problem where the associated nonconvex quadratic programming problem has low rank nonconcave property.

    Web of Science

    researchmap

  • Third degree stochastic dominance and mean-risk analysis Reviewed

    Jun-ya Gotoh, Hiroshi Konno

    Management Science   46 ( 2 )   289 - 301   2000.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:INST OPERATIONS RESEARCH MANAGEMENT SCIENCES  

    In their recent article, Ogryczak and Ruszczynski (1999) proved that those portfolios associated with the efficient frontiers generated by mean-lower semi-standard deviation model and mean- (lower semi-)absolute deviation model are efficient in the sense of second degree stochastic dominance. This rather surprising result reveals the importance of lower partial risk models in portfolio analysis.
    In this paper, we extend the results of Ogryczak and Ruszczynski for second degree stochastic dominance to third degree stochastic dominance. We show that portfolios on a significant portion of the efficient frontier generated by mean-lower semi-skewness model are efficient in the sense of third degree stochastic dominance. Also, we prove that the portfolios generated by mean-variance-skewness model are semi-efficient in the sense of third degree stochastic dominance.

    Web of Science

    researchmap

  • Exact penalty method for knot selection of B-spline regression Reviewed

    Shotaro Yagishita, Jun-ya Gotoh

    Japan Journal of Industrial and Applied Mathematics   2023.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1007/s13160-023-00631-5

    researchmap

    Other Link: https://link.springer.com/article/10.1007/s13160-023-00631-5/fulltext.html

  • Dynamic portfolio selection with linear control policies for coherent risk minimization Reviewed

    Yuichi Takano, Jun-ya Gotoh

    Operations Research Perspectives   10   1 - 10   2023.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.orp.2022.100262

    researchmap

  • On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression Reviewed

    Shummin Nakayama, Jun-ya Gotoh

    Optimization Letters   15   2831 - 2860   2021.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer  

    DOI: 10.1007/s11590-021-01716-1

    researchmap

  • 初到達時間を用いたペアポートフォリオ最適化問題の新定式化 Reviewed

    東出 卓朗, 浅井 謙輔, 後藤 順哉, 藤田 岳彦

    日本応用数理学会論文誌   30 ( 3 )   194 - 225   2020

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)   Publisher:JSIAM  

    researchmap

  • Peer-To-Peer Lending: Classification in the Loan Application Process Reviewed

    Xinyuan Wei, Jun-ya Gotoh, Stan Uryasev

    Risks   6 ( 4 )   2018.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:MDPI  

    This paper studies the peer-to-peer lending and loan application processing of LendingClub. We tried to reproduce the existing loan application processing algorithm and find features used in this process. Loan application processing is considered a binary classification problem. We used the area under the ROC curve (AUC) for evaluation of algorithms. Features were transformed with splines for improving the performance of algorithms. We considered three classification algorithms: logistic regression, buffered AUC (bAUC) maximization, and AUC maximization.With only three features, Debt-to-Income Ratio, Employment Length, and Risk Score, we obtained an AUC close to 1. We have done both in-sample and out-of-sample evaluations. The codes for cross-validation and solving problems in a Portfolio Safeguard (PSG) format are in the Appendix. The calculation results with the data and codes are posted on the website and are available for downloading.

    DOI: 10.3390/risks6040129

    researchmap

  • Preface

    Stan Uryasev, Jun-ya Gotoh

    Annals of Operations Research   2018.3

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1007/s10479-017-2749-z

    researchmap

  • CVaR Minimizations in Support Vector Machines Reviewed

    Jun-Ya Gotoh, Akiko Takeda

    Financial Signal Processing and Machine Learning   233 - 265   2016.4

     More details

    Language:English   Publishing type:Part of collection (book)   Publisher:wiley  

    This chapter overview the connections between support vector machines (SVM) and conditional value at risk (CVaR) minimization and suggests further interactions beyond their similarity in appearance. It introduces several SVM formulations, whose relation to CVaR minimization. The chapter further discusses robust extensions of the CVaR formulation. It presents the dual problems of the CVaR-minimizing formulations, and shows that two kinds of robust modeling of the CVaR minimization for binary classification are tractable. Dual representations expand the range of algorithms and enrich the theory of SVM. SVMs are one of the most successful supervised learning methods that can be applied to classification or regression. The maximum margin hyperplane of hard-margin SVM classification (SVC) minimizes an upper bound of the generalization error. The support vector regression (SVR) method performs well in regression analysis and is a popular data analysis tool in machine learning and signal processing.

    DOI: 10.1002/9781118745540.ch10

    Scopus

    researchmap

  • 媒介変数表現に基づくJEPXスポット電力供給・需要関数の推定 Reviewed

    山田雄二, 牧本直樹, 高嶋隆太, 後藤順哉

    ジャフィー・ジャーナル[ファイナンスにおける数値計算手法の新展開]   15   64 - 93   2016.3

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)   Publisher:朝倉書店  

    CiNii Books

    researchmap

  • Robust empirical optimization is almost the same as mean-variance optimization

    Gotoh, Jun-ya, Kim, Michael Jong, Lim, Andrew

    2015

     More details

  • Interaction between financial risk measures and machine learning methods Reviewed

    Gotoh, Jun-ya, Takeda, Akiko, Yamamoto, Rei

    Computational Management Science   11 ( 4 )   365 - 402   2014.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer  

    researchmap

  • ECサイトにおける顧客の閲覧履歴を利用した 商品ランキング生成法 Reviewed

    武政孝師, 後藤順哉

    オペレーションズ・リサーチ -経営の科学-   59 ( 8 )   465 - 471   2014.8

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)   Publisher:日本オペレーションズ・リサーチ学会  

    CiNii Books

    researchmap

  • Multi-period portfolio selection using kernel-based control policy with dimensionality reduction Reviewed

    Takano, Yuichi, Gotoh, Jun-ya

    Expert Systems with Applications   41 ( 8 )   3901 - 3914   2014.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier  

    researchmap

  • 振動を伴う状態変化過程のデータを用いた安定状態の推定 Reviewed

    猪俣考史, 鎌倉稔成, 後藤順哉

    応用統計学   43 ( 1-3 )   45 - 57   2014.5

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    J-GLOBAL

    researchmap

  • Convex optimization approaches to maximally predictable portfolio selection Reviewed

    Jun-ya Gotoh, Katsuki Fujisawa

    Optimization   63 ( 11 )   1713 - 1735   2014

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:TAYLOR & FRANCIS LTD  

    In this article we propose a simple heuristic algorithm for approaching the maximally predictable portfolio, which is constructed so that return model of the resulting portfolio would attain the largest goodness-of-fit. It is obtained by solving a fractional program in which a ratio of two convex quadratic functions is maximized, and the number of variables associated with its nonconcavity has been a bottleneck in spite of continuing endeavour for its global optimization. The proposed algorithm can be implemented by simply solving a series of convex quadratic programs, and computational results show that it yields within a few seconds a (near) Karush-Kuhn-Tucker solution to each of the instances which were solved via a global optimization method in [H. Konno, Y. Takaya and R. Yamamoto, A maximal predictability portfolio using dynamic factor selection strategy, Int. J. Theor. Appl. Fin. 13 (2010) pp. 355-366]. In order to confirm the solution accuracy, we also pose a semidefinite programming relaxation approach, which succeeds in ensuring a near global optimality of the proposed approach. Our findings through computational experiments encourage us not to employ the global optimization approach, but to employ the local search algorithm for solving the fractional program of much larger size.

    DOI: 10.1080/02331934.2012.741237

    Web of Science

    researchmap

  • Support vector classification with positive homogeneous risk functionals

    Tsyurmasto, Peter, Uryasev, Stan, Gotoh, Jun-ya

    2013

     More details

  • CVaR最小化と信用リスク判別モデル

    後藤順哉, 山本零

    MTECジャーナル   ( 24 )   29 - 48   2012.11

     More details

    Language:Japanese   Publisher:MTEC  

    CiNii Books

    researchmap

  • Bounding Contingent Claim Prices via Hedging Strategy with Coherent Risk Measures Reviewed

    Jun-ya Gotoh, Yoshitsugu Yamamoto, Weifeng Yao

    Journal of Optimization Theory and Applications   151 ( 3 )   613 - 632   2011.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER/PLENUM PUBLISHERS  

    We generalize the notion of arbitrage based on the coherent risk measure, and investigate a mathematical optimization approach for tightening the lower and upper bounds of the price of contingent claims in incomplete markets. Due to the dual representation of coherent risk measures, the lower and upper bounds of price are located by solving a pair of semi-infinite linear optimization problems, which further reduce to linear optimization when conditional value-at-risk (CVaR) is used as risk measure. We also show that the hedging portfolio problem is viewed as a robust optimization problem. Tuning the parameter of the risk measure, we demonstrate by numerical examples that the two bounds approach to each other and converge to a price that is fair in the sense that seller and buyer face the same amount of risk.

    DOI: 10.1007/s10957-011-9899-y

    Web of Science

    researchmap

  • 企業価値変動モデルとCVaRを用いた与信ポートフォリオ最適化問題とその効率的解法 Reviewed

    後藤順哉, 高野祐一, 山本芳嗣, 和田保乃

    日本オペレーションズ・リサーチ学会和文論文誌   54   23 - 42   2011.12

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)   Publisher:日本オペレーションズ・リサーチ学会  

    Credit risk is the risk of loss stemming from borrower's default. We consider the credit risk minimization problem and propose an optimization method for minimizing the risk measured by Conditional Value-at-Risk (CVaR) criterion. Default of firms is modeled by the corporate valuation model and the factor analysis of time series data of TOPIX Sector Indices, scenarios of defaults are generated, and then CVaR minimization problem is solved. By varying the number of factors incorporated in the model as well as the coefficient that determines the impact of factors peculiar to industry type, we observe how economic trend, industry type and rating of the firms influence the defaults and the credit risk. A large number of scenarios are required to obtain a reliable implication; however, the CVaR minimization problem becomes harder to solve. We propose a simple but effective pre-treatment of the scenarios and also a solution technique. We solved the problem with a hundred thousand scenarios in about 7 seconds and that with half a million scenarios in about 35 seconds.

    DOI: 10.15807/torsj.54.23

    CiNii Books

    researchmap

  • Constant Rebalanced Portfolio Optimization Under Nonlinear Transaction Costs Reviewed

    Yuichi Takano, Jun-ya Gotoh

    Asia-Pacific Financial Markets   18 ( 2 )   191 - 211   2011.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer  

    We study the constant rebalancing strategy for multi-period portfolio optimization via conditional value-at-risk (CVaR) when there are nonlinear transaction costs. This problem is difficult to solve because of its nonconvexity. The nonlinear transaction costs and CVaR constraints make things worse
    state-of-the-art nonlinear programming (NLP) solvers have trouble in reaching even locally optimal solutions. As a practical solution, we develop a local search algorithm in which linear approximation problems and nonlinear equations are iteratively solved. Computational results are presented, showing that the algorithm attains a good solution in a practical time. It is better than the revised version of an existing global optimization. We also assess the performance of the constant rebalancing strategy in comparison with the buy-and-hold strategy. © 2010 Springer Science+Business Media, LLC.

    DOI: 10.1007/s10690-010-9130-4

    Scopus

    researchmap

  • Numerical Evaluation of Dynamic Behavior of Ornstein-Uhlenbeck Processes Modified by Various Boundaries and its Application to Pricing Barrier Options Reviewed

    Jun-ya Gotoh, Hui Jin, Ushio Sumita

    Methodology and Computing in Applied Probability   13 ( 1 )   193 - 219   2011.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER  

    In financial engineering, one often encounters barrier options in which an action promised in the contract is taken if the underlying asset value becomes too high or too low. In order to compute the corresponding prices, it is necessary to capture the dynamic behavior of the associated stochastic process modified by boundaries. To the best knowledge of the authors, there is no algorithmic approach available to compute such prices repeatedly in a systematic manner. The purpose of this paper is to develop computational algorithms to capture the dynamic behavior of Ornstein-Uhlenbeck processes modified by various boundaries based on the Ehrenfest approximation approach established in Sumita et al. (J Oper Res Soc Jpn 49:256-278, 2006). As an application, we evaluate the prices of up-and-out call options maturing at time tau(M) with strike price K(S) written on a discount bond maturing at time T, demonstrating the usefulness, speed and accuracy of the proposed computational algorithms.

    DOI: 10.1007/s11009-009-9152-4

    Web of Science

    researchmap

  • A nonlinear control policy using kernel method for dynamic asset allocation Reviewed

    Yuichi Takano, Jun-Ya Gotoh

    Journal of the Operations Research Society of Japan   54 ( 4 )   201 - 218   2011

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:Operations Research Society of Japan  

    We build a computational framework for determining an optimal dynamic asset allocation over multiple periods. To do this, we use a nonlinear control policy, which is a function of past returns of investable assets. By employing a kernel method, the problem of selecting the best control policy from among nonlinear functions can be formulated as a convex quadratic optimization problem. Furthermore, we reduce the problem to a linear optimization problem by employing Li-norm regularization. A numerical experiment was conducted wherein scenarios of the rate of return of investable assets were generated by using a one-period autoregressive model, and the results showed that our investment strategy improves an investment performance more than other strategies from previous studies do. © The Operations Research Society of Japan.

    DOI: 10.15807/jorsj.54.201

    Scopus

    researchmap

  • alpha-Conservative approximation for probabilistically constrained convex programs Reviewed

    Yuichi Takano, Jun-ya Gotoh

    Computational Optimization and Applications   46 ( 1 )   113 - 133   2010.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER  

    In this paper, we address an approximate solution of a probabilistically constrained convex program (PCCP), where a convex objective function is minimized over solutions satisfying, with a given probability, convex constraints that are parameterized by random variables. In order to approach to a solution, we set forth a conservative approximation problem by introducing a parameter alpha which indicates an approximate accuracy, and formulate it as a D.C. optimization problem.
    As an example of the PCCP, the Value-at-Risk (VaR) minimization is considered under the assumption that the support of the probability of the associated random loss is given by a finitely large number of scenarios. It is advantageous in solving the D.C. optimization that the numbers of variables and constraints are independent of the number of scenarios, and a simplicial branch-and-bound algorithm is posed to find a solution of the D.C. optimization. Numerical experiments demonstrate the following: (i) by adjusting a parameter alpha, the proposed problem can achieve a smaller VaR than the other convex approximation approaches; (ii) when the number of scenarios is large, a typical 0-1 mixed integer formulation for the VaR minimization cannot be solved in a reasonable time and the improvement of the incumbent values is slow, whereas the proposed method can achieve a good solution at an early stage of the algorithm.

    DOI: 10.1007/s10589-008-9178-5

    Web of Science

    researchmap

  • Support vector regression as conditional value-at-risk minimization with application to financial time-series analysis Reviewed

    Akiko Takeda, Jun-Ya Gotoh, Masashi Sugiama

    Proceedings of the 2010 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2010   118 - 123   2010

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    Support vector regression (SVR) is a popular regression algorithm in machine learning and signal processing. In this paper, we first prove that the SVR algorithm is equivalent to minimizing the conditional value-at-risk (CVaR) of the distribution of the ℓ1-loss residuals, which is a popular risk measure in finance. The equivalence between SVR and CVaR minimization allows us to derive a new upper bound on the ℓ1-loss generalization error of SVR. Then we show that SVR actually minimizes the upper bound under some condition, implying its optimality. We finally apply the SVR method to an index tracking problem in finance, and develop a new portfolio selection method. Experiments show that the proposed method compares favorably with alternative approaches. ©2010 IEEE.

    DOI: 10.1109/MLSP.2010.5589245

    Scopus

    researchmap

  • Portfolio Learning via VaR/CVaR Minimization

    Gotoh,J, Takeda,A

    Dept.of Industrial and Systems Engineering Discussion Paper Series   08 ( 04 )   2008.5

     More details

    Language:English  

    researchmap

  • Conditional minimum volume ellipsoid with application to multiclass discrimination Reviewed

    Gotoh, Jun-ya, Takeda, Akiko

    Computational Optimization and Applications   41 ( 1 )   27 - 51   2008

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer  

    researchmap

  • A new approach for computing option prices of the Hull-White type with stepwise reversion and volatility functions Reviewed

    Hui Jin, Jun-Ya Gotoh, Ushio Sumita

    Journal of Derivatives   15 ( 1 )   67 - 85   2007.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Institutional Investor, Inc  

    The Hull-White model is a one factor Markov model well known for its capability to capture the current term structure of interest rates. Analytical results are available for pricing zero-coupon discount bonds and associated European options when both reversion and volatility functions are constant. In reality, however, these functions do vary over time. It is then of practical interest to develop efficient computational algorithms that can deal with time dependent reversion and volatility functions. The purpose of this article is to achieve this goal via the Ehrenfest approximation of the underlying O-U process, where the time dependent structure is represented by step functions. Based on the convergence theorem by Sumita, Gotoh and Jin [2006] and the uniformization procedure of Keilson [1979], a novel approach is proposed to evaluate the prices of zero-coupon discount bonds and associated European options for stepwise reversion and volatility functions. The ordinary Hull-White trinomial tree approach is also modified to cope with this case for comparison purposes. However, it is shown that the modified trinomial tree approach is not applicable for certain step functions, while the Ehrenfest approach can always be used for any step functions. Numerical results are given, demonstrating the excellent speed and accuracy of the Ehrenfest approach.

    DOI: 10.3905/jod.2007.694793

    Scopus

    researchmap

  • Minimal ellipsoid circumscribing a polytope defined by a system of linear inequalities Reviewed

    Gotoh, Jun-Ya, Konno, Hiroshi

    Journal of Global Optimization   34 ( 1 )   1 - 14   2006.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer  

    researchmap

  • NUMERICAL EXPLORATION OF DYNAMIC BEHAVIOR OF ORNSTEIN-UHLENBECK PROCESSES VIA EHRENFEST PROCESS APPROXIMATION (< Special Issue> Advanced Planning and Scheduling for Supply Chain Management) Reviewed

    Sumita, Ushio, Gotoh, Jun-ya, Jin, Hui

    Journal of the Operations Research Society of Japan   49 ( 3 )   256 - 278   2006.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:The Operations Research Society of Japan  

    researchmap

  • Global optimization method for solving the minimum maximal flow problem Reviewed

    Jun-ya Gotoh, Nguyen Van Thoai, Yoshitsugu Yamamoto

    Optimization Methods and Software   18 ( 4 )   395 - 415   2003.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:TAYLOR & FRANCIS LTD  

    The problem of minimizing the flow value attained by maximal flows plays an important and interesting role to investigate how inefficiently a network can be utilized. It is a typical multiextremal optimization problem, which can have local optima different from global optima. We formulate this problem as a global optimization problem with a special structure and propose a method to combine different techniques in local search and global optimization. Within the proposed algorithm, the advantageous structure of network flow is fully exploited so that the algorithm should be suitable for handling the problem of moderate sizes.

    DOI: 10.1080/1055678031000120191

    Web of Science

    researchmap

  • A cutting plane algorithm for semi-definite programming problems with applications to failure discriminant analysis Reviewed

    Konno, Hiroshi, Gotoh, Jun-ya, Uno, Takeaki, Yuki, Atsushi

    Journal of Computational and Applied Mathematics   146 ( 1 )   141 - 154   2002.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier  

    researchmap

  • Failure discrimination by semi-definite programming Reviewed

    Hiroshi Konno, Jun-ya Gotoh, Stan Uryasev, Atsushi Yuki

    Financial Engineering, E-Commerce and Supply Chain   70   379 - 396   2002

     More details

    Language:English   Publishing type:Research paper (other academic)   Publisher:SPRINGER  

    This paper addresses itself to a new approach for failure discriminant analysis, a classical and yet very actively studied problem in financial engineering. The basic idea of the new method is to separate multi-dimensional financial data corresponding to ongoing and failed enterprises by an ellipsoidal surface which enjoys a good mathematical property as well as a clear financial interpretation.
    We will apply a new cutting plane algorithm for solving a resulting semi-definite programming problem and show that it can generate an optimal solution in a much more efficient way than standard interior point algorithms. Computational results using financial data of Japanese enterprises show that the ellipsoidal separation leads to significantly better results than the hyperplane separation. Also it performs better than the separation by a general quadratic surface, a well used method in support vector machine approach.

    Web of Science

    researchmap

  • 平均-リスク・モデルと確率優越の関係について Reviewed

    後藤順哉

    ジャフィー・ジャーナル1999   25 - 56   1999.12

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)   Publisher:日本金融・証券計量・工学学会  

    researchmap

  • 地価決定における「期待」と「流動性」の役割 Reviewed

    後藤順哉, 今野浩

    ジャフィー・ジャーナル1999   75 - 93   1999.12

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)   Publisher:日本金融・証券計量・工学学会  

    researchmap

▼display all

Books

  • 数理最適化

    久野誉人, 繁野麻衣子, 後藤順哉( Role: Joint author)

    オーム社  2012.8 

     More details

    Total pages:262   Language:Japanese   Book type:Scholarly book

    researchmap

  • 意思決定のための数理モデル入門

    今野浩, 後藤順哉( Role: Joint author後藤:3章と5章,今野:それ以外)

    朝倉書店  2011.9 

     More details

    Language:Japanese   Book type:Scholarly book

    researchmap

  • Excelで学ぶOR

    藤澤克樹, 後藤順哉, 安井雄一郎( Role: Joint author)

    オーム社  2011.7 

     More details

    Total pages:310   Language:Japanese   Book type:Scholarly book

    researchmap

MISC

  • 分布的ロバスト最適化モデリング : 解釈と実用への示唆—特集 最適化の理論と応用

    後藤 順哉

    オペレーションズ・リサーチ = Communications of the Operations Research Society of Japan : 経営の科学   66 ( 5 )   300 - 307   2021.5

     More details

    Language:Japanese   Publisher:日本オペレーションズ・リサーチ学会  

    CiNii Books

    CiNii Research

    researchmap

  • Efficient DC Algorithm for Constrained Sparse Optimization

    Katsuya Tono, Akiko Takeda, Jun-ya Gotoh

    2017.1

     More details

    Publishing type:Internal/External technical report, pre-print, etc.  

    We address the minimization of a smooth objective function under an<br />
    $\ell_0$-constraint and simple convex constraints. When the problem has no<br />
    constraints except the $\ell_0$-constraint, some efficient algorithms are<br />
    available; for example, Proximal DC (Difference of Convex functions) Algorithm<br />
    (PDCA) repeatedly evaluates closed-form solutions of convex subproblems,<br />
    leading to a stationary point of the $\ell_0$-constrained problem. However,<br />
    when the problem has additional convex constraints, they become inefficient<br />
    because it is difficult to obtain closed-form solutions of the associated<br />
    subproblems. In this paper, we reformulate the problem by employing a new DC<br />
    representation of the $\ell_0$-constraint, so that PDCA can retain the<br />
    efficiency by reducing its subproblems to the projection operation onto a<br />
    convex set. Moreover, inspired by the Nesterov&#039;s acceleration technique for<br />
    proximal methods, we propose the Accelerated PDCA (APDCA), which attains the<br />
    optimal convergence rate if applied to convex programs, and performs well in<br />
    numerical experiments.

    arXiv

    researchmap

  • 情報の窓 国際会議ICCOPT 2016 Tokyo開催の経験と教訓(2)プログラム作成の舞台裏

    後藤 順哉

    オペレーションズ・リサーチ = Communications of the Operations Research Society of Japan : 経営の科学   62 ( 1 )   51 - 58   2017.1

     More details

    Language:Japanese   Publisher:日本オペレーションズ・リサーチ学会  

    CiNii Books

    CiNii Research

    researchmap

  • 資産価格付けの基本定理 : ポートフォリオと確率の双対性—特集 はじめよう金融工学

    後藤 順哉

    オペレーションズ・リサーチ = Communications of the Operations Research Society of Japan : 経営の科学   61 ( 6 )   345 - 350   2016.6

     More details

    Language:Japanese   Publisher:日本オペレーションズ・リサーチ学会  

    CiNii Books

    CiNii Research

    researchmap

  • 1-C-3 地域間送電・分断を考慮した電源構成についての比較(オリンピック・パラリンピックとOR(1))

    三澤 祐一, 後藤 順哉, 山田 雄二

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   2015   46 - 47   2015.9

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    CiNii Books

    CiNii Research

    researchmap

  • 2-B-2 単調な一般化加法モデルの二次錐制約を用いた定式化(連続最適化(2))

    後藤 順哉, 山田 雄二

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   2015   184 - 185   2015.9

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    CiNii Books

    CiNii Research

    researchmap

  • 2-D-9 一般化加法モデルを用いたJEPX入札関数の推定(電力関連)

    山田 雄二, 牧本 直樹, 高嶋 隆太, 後藤 順哉

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2015   258 - 259   2015.3

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    CiNii Books

    CiNii Research

    researchmap

  • 2-H-5 凸リスク関数と任意のノルムを用いたSVMの定式化(連続最適化(2))

    後藤 順哉

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2015   328 - 329   2015.3

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    CiNii Books

    CiNii Research

    researchmap

  • 2-H-4 2組の多面体ノルムとl_pノルム : 近さの評価と最適化への応用(最適化(2))

    後藤 順哉

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   2014   274 - 275   2014.8

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    CiNii Books

    CiNii Research

    researchmap

  • 2-C-8 カーネル法を利用した動的ポートフォリオ最適化(金融(4))

    高野 祐一, 後藤 順哉

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2013   182 - 183   2013.3

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    CiNii Books

    CiNii Research

    researchmap

  • 1-C-3 コヒレント・リスク尺度最小化に基づくSVMと格付け判別への適用(金融(1))

    後藤 順哉, 武田 朗子, 山本 零

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2013   46 - 47   2013.3

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    CiNii Books

    researchmap

  • 機械学習とポートフォリオ選択の素敵な関係 (特集 活躍する機械学習)

    武田 朗子, 後藤 順哉

    オペレーションズ・リサーチ   57 ( 7 )   373 - 379   2012.7

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    本稿では「機械学習」と「金融工学」という,独立に生まれ,発展してきた2つの分野の方法論に共通する構造と差異に着目して,新しい発見に繋げようという試みを紹介したい.とりわけ,「機械学習」と「金融工学」の間では双方向への貢献が可能であること,そして両分野間に素敵な関係を見いだすことができることを示す.

    CiNii Books

    researchmap

  • Excelで始める数理最適化—特集 はじめよう整数計画

    後藤 順哉

    オペレーションズ・リサーチ = Communications of the Operations Research Society of Japan : 経営の科学   57 ( 4 )   175 - 182   2012.4

     More details

    Language:Japanese   Publisher:日本オペレーションズ・リサーチ学会  

    CiNii Books

    CiNii Research

    researchmap

  • 1-F-2 動的資産配分のためのカーネル法を利用した非線形制御ポリシー(ポートフォリオ)

    高野 祐一, 後藤 順哉

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2012   96 - 97   2012.3

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    CiNii Books

    CiNii Research

    researchmap

  • 2-A-4 CVaR最小化のためのロバスト・ポートフォリオ・モデル(計算と最適化の新展開)

    後藤 順哉, 篠崎 桂太

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2011   120 - 121   2011.3

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    CiNii Books

    CiNii Research

    researchmap

  • 2-B-8 決定係数最大化ポートフォリオ選択に対する凸最適化アプローチ(連続最適化)

    後藤 順哉, 藤澤 克樹

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2010   130 - 131   2010.3

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    CiNii Books

    CiNii Research

    researchmap

  • 2-A-14 ポートフォリオ最適化におけるノルム制約(計算と最適化(3))

    後藤 順哉, 武田 朗子

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2009   136 - 137   2009.3

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    CiNii Books

    researchmap

  • 1-F-1 取引コストを考慮したコンスタント・リバランス・ポートフォリオ最適化(金融)

    高野 祐一, 後藤 順哉

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2009   96 - 97   2009.3

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    CiNii Books

    CiNii Research

    researchmap

  • Improving the Out-of-Sample Performance via VaR/CVaR Minimization: A Statistical Learning Approach to Portfolio Selection

    後藤 順哉

    統計数理研究所共同研究リポート229「最適化:モデリングとアルゴリズム」22巻   36 - 50   2009

  • 2-A-3 汎化理論に基づくVaR/CVaR最小化ポートフォリオ選択モデル(金融工学(4))

    後藤 順哉, 武田 朗子

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   2008   148 - 149   2008.9

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    CiNii Books

    researchmap

  • 平成19年秋季研究発表会ルポ

    後藤 順哉, 武田 朗子, 土村 展之, 八木 恭子

    オペレーションズ・リサーチ : 経営の科学 = [O]perations research as a management science [r]esearch   53 ( 1 )   59 - 62   2008.1

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    CiNii Books

    CiNii Research

    researchmap

  • 2-B-8 機会制約付き凸計画問題に対するα-保守的近似(大域的最適化)

    後藤 順哉, 高野 祐一

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   2007   166 - 167   2007.9

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    CiNii Books

    CiNii Research

    researchmap

  • 条件付き最小楕円と多クラス判別への応用(モデリングと最適化の理論)

    後藤 順哉, 武田 朗子

    数理解析研究所講究録   1526   129 - 136   2006.12

     More details

    Language:Japanese   Publisher:京都大学  

    CiNii Books

    researchmap

    Other Link: http://hdl.handle.net/2433/58868

  • 2-G-3 条件付き最小楕円と多クラス判別への応用(判別・分類)

    後藤 順哉, 武田 朗子

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2006   230 - 231   2006.3

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    CiNii Books

    researchmap

  • A New Approach for Computing Option Prices of the Hull-White Type with Stepwise Reversion and Volatility Functions

    Jin, H. Gotoh, J, Sumita, U

    筑波大学社会システム・マネジメント ディスカッション・ペーパー・シリーズ   ( 1138 )   2005.12

     More details

    Language:English   Publishing type:Article, review, commentary, editorial, etc. (other)   Publisher:筑波大学システム情報工学研究科社会システム・マネジメント専攻  

    researchmap

  • 1-E-2 On Evaluation of Dynamic Behavior of Modified Ornstein-Uhlenbeck Processes with Various Boundaries

    GOTOH Jun-ya, SUMITA Ushio, JIN Hui

    2005   110 - 111   2005.9

     More details

    Language:English   Publisher:The Operations Research Society of Japan  

    CiNii Books

    CiNii Research

    researchmap

  • 情報の窓 〔日本オペレーションズ・リサーチ学会〕平成17年春季研究発表会ルポ

    山下 真, 中田 和秀, 後藤 順哉

    オペレーションズ・リサーチ = Communications of the Operations Research Society of Japan : 経営の科学   50 ( 7 )   500 - 504   2005.7

     More details

    Language:Japanese   Publisher:日本オペレーションズ・リサーチ学会  

    記事種別: 会議・学会報告・シンポジウム

    CiNii Books

    CiNii Research

    researchmap

  • Conditional Geometric Score に基づく線形判別モデル(SVM)

    後藤 順哉, 武田 朗子

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2005   244 - 245   2005.3

     More details

    Language:Japanese   Publisher:公益社団法人日本オペレーションズ・リサーチ学会  

    CiNii Books

    researchmap

  • A New Approach for Computing Bond Prices by the Hull-White Model with Stepwise Reversion Function

    JIN Hui, GOTOH Jun-ya, SUMITA Ushio

    2005   198 - 199   2005.3

     More details

    Language:English   Publisher:The Operations Research Society of Japan  

    CiNii Books

    CiNii Research

    researchmap

  • 『金融工学事典』のうち「投資決定モデル」(1項目)

    今野浩, 刈谷武昭, 木島正明

    2004.8

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (other)   Publisher:朝倉書店  

    researchmap

  • Numerical Exploration of Dynamic Behavior of the Ornstein-Uhlenbeck Process via Ehrenfest Process Approximation

    SUMITA Ushio, GOTOH Jun-ya, JIN Hui

    2004   194 - 195   2004.3

     More details

    Language:English   Publisher:The Operations Research Society of Japan  

    CiNii Books

    CiNii Research

    researchmap

  • 情報の窓 平成12年度秋季研究発表会ルポ

    武田 朗子, 後藤 順哉

    オペレーションズ・リサーチ = Communications of the Operations Research Society of Japan : 経営の科学   46 ( 2 )   99 - 103   2001.2

     More details

    Language:Japanese   Publisher:日本オペレーションズ・リサーチ学会  

    記事種別: 会議・学会報告・シンポジウム

    CiNii Books

    CiNii Research

    researchmap

▼display all

Presentations

  • Optimization approaches to tailor regression spline for better fit Invited

    Jun-ya Gotoh, Shotaro Yagishita, Shichen Zuo

    International Conference on Stochastic Programming 2023  2023.7 

     More details

    Event date: 2023.7    

    Presentation type:Oral presentation (general)  

    researchmap

  • Knot Selection of B-Spline Regression via Trimmed Regularizer

    Shotaro Yagishita, Jun-ya Gotoh

    INFORMS Annual Meeting 2022 Indianapolis  2022.10 

     More details

    Event date: 2022.10    

    Presentation type:Oral presentation (general)  

    researchmap

  • Knot Selection of B-Spline Regression via Trimmed Regularizer

    Shotaro Yagishita, Jun-ya Gotoh

    International Conference on Continuous Optimization 2022  2022.7 

     More details

    Event date:   - 2022.7

    Presentation type:Poster presentation  

    researchmap

  • Fitting Models to Data with Trimmed LASSO Penalties Invited International conference

    Jun-ya Gotoh

    NUS-Tsukuba Joint-Online-Workshop on “Sustainable Management and Data Sciences”  ( (online) )   2021.3  Institute of Operations Research and Analytics, National University of Singapore, Singapore Faculty of Business Sciences, University of Tsukuba, Tokyo, Japan

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

    researchmap

  • 分布的ロバスト最適化におけるパラメータの選択 Invited

    後藤順哉

    数理システムアカデミックコンファレンス FY 2020  ( (online) )   2021.2  NTT DATA Mathematical Systems Inc.

     More details

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    researchmap

  • Worst-case Sensitivity Invited International conference

    Jun-ya Gotoh

    Workshop: Uncertainty Management and Machine Learning in Engineering Applications  ( (online) )   2020.11  Stan Uryasev, Pawel Polak, and Kevin Maritato (Stony Brook University) Drew P. Kouri (Sandia National Laboratories)

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

    researchmap

  • 分布的ロバスト最適化モデリング---解釈と実用への示唆 Invited

    後藤順哉

    日本オペレーションズ・リサーチ学会 関西支部シンポジウム『最適化の理論と応用』  ( 中央電気倶楽部 ホール (https://www.chuodenki-club.or.jp) )   2020.11  日本オペレーションズ・リサーチ学会 関西支部

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    researchmap

  • Continuous Exact Penalty Approach To Grouped Variable Selection In Regression Methods International conference

    Jun-ya Gotoh

    INFORMS Annual Meeting 2020 virtual  ( (online) )   2020.10  INFORMS

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Sparse Robust Regression With Continuous Exact K-sparse Penalties International conference

    Jun-ya Gotoh, Shummin Nakayama

    INFORMS Annual Meeting 2019 Seattle  ( Washington State Convention Center 705 Pike Street Seattle, WA 98101 )   2019.10  INFORMS

     More details

    Language:English   Presentation type:Oral presentation (general)  

    In this talk we study applications and efficient algorithms for k-sparse recovery problem on the basis of the Continuous Exact k-Sparse Penalties (CXPs) or which is also known as partial regularizers. Each CXP is defined by a non-convex but continuous function and the equality forcing the function value to be zero is known to be equivalent to the k-sparse constraint defined with the so-called l0-norm. Algorithms based on the proximal mapping of the lp-norm based CXPs will be examined for sparsity-seeking estimation problems such as a sparse robust.regression problem.

    researchmap

  • Calibration of Distributionally Robust Empirical Optimization Models Invited

    Jun-ya Gotoh, Michael J. Kim, Andrew E.B. Lim

    SWJTU Seminar, Chengdu, China  ( School of Mathematics, Southwest Jiaotong University )   2019.9  School of Mathematics, Southwest Jiaotong University

     More details

    Language:English   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    researchmap

  • Calibration of distributionally robust empirical optimization models International conference

    Jun-ya Gotoh, Michael J. Kim, Andrew E.B. Lim

    NACA-ICOTA 2019, Hakodate  ( Future University Hakodate )   2019.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Sparse recovery with continuous exact k-sparse penalties Invited International conference

    Jun-ya Gotoh, Takumi Fukuda

    ICCOPT 2019 (the Sixth International Conference on Continuous Optimization)  ( TU Berlin, Germany )   2019.8  MOS (Mathematical Optimization Society)

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Out-of-sample analysis of distributionally robust optimization Invited International conference

    Jun-ya Gotoh, Michael Jong Kim, Andrew E.B. Lim

    23rd International Symposium on Mathematical Programming (ISMP 2018 Bordeaux)  ( The University of Bordeaux, Bordeaux, France )   2018.7  Mathematical Optimization Society (MOS)

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • A DC Optimization Approach to Sparse Spline Regression

    Yuichi Misawa

    INFORMS Annual Meeting 2017  2017.10 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • ノルムを用いた最適化モデリング

    日本オペレーションズ・リサーチ学会2017年度秋季研究発表会  2017.9 

     More details

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    researchmap

  • Robust Empirical Optimization is Almost the Same as Mean-Variance Optimization

    Jun-ya Gotoh, Michael J. Kim, Andrew E.B. Lim

    SIAM Optimization Conference 2017  2017.5 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • DC Formulations and Algorithms for Sparse Optimization Problems

    Akiko Takeda, Katsuya Tono

    NUS Business School Decision Sciences Department Seminar  2017.3 

     More details

    Language:English   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    researchmap

  • DC表現によるスパース・スプライン回帰

    後藤順哉, 三澤祐一

    日本オペレーションズ・リサーチ学会  2017.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Robust Empirical Optimization is Almost the Same as Mean-variance Optimization

    Michael J. Kim, Andrew E.B. Lim

    INFORSM Annual Meeting 2016  2016.11 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • DC Formulations and Algorithms for Sparse Optimization Problems

    Akiko Takeda, Katsuya Tono

    Workshop on Risk Management Approaches in Engineering Applications  2016.11 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Conditional Value-at-Risk and Its Applications in Optimization

    Department of Industrial and Systems Engineering, KAIST(学科セミナー​型講義​での講演​)  2016.9 

     More details

    Language:English   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    researchmap

  • ロバスト最適化≒平均分散最小化

    Kim, Michael J, Lim, Andrew E

    日本オペレーションズ・リサーチ学会春季研究発表会  2016.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Support Vector Machines Based on Convex Risk Functionals and General Norms

    Uryasev, Stan

    INFORMS Annual Meeting 2015  2015.11 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Robust empirical optimization is almost the same as mean-variance optimization

    Kim, Michael J, Lim, Andrew E

    INFORMS Annual Meeting 2015  2015.11 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • 単調な一般化加法モデルの二次錐制約を用いた定式化

    山田雄二

    日本オペレーションズ・リサーチ学会秋季研究発表会  2015.9 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Two Perspectives on Robust Empirical Optimization

    Kim, Michael J, Lim, Andrew E

    22nd International Symposium on Mathematical Programming  2015.7 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • On the Role of Norm Constraints in Portfolio Selection

    TAKEDA, Akiko

    INFORMS Annual Meeting 2009  2009.10 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • On the Role of Norm Constraints in Portfolio Selection

    TAKEDA, Akiko

    20th International Symposium on Mathematical Programming  2009.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • ノルム制約を課したCVaR偏差最小化トラッキング・ポートフォリオ

    武田朗子

    日本金融・証券計量・工学学会2009年度夏季大会  2009.7 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • ポートフォリオ選択におけるノルム制約の役割について

    武田朗子

    日本オペレーションズ・リサーチ学会平成21年春季発表会  2009.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Improving Portfolio Performance via VaR/CVaR Minimization: A Statistical Learning Approach

    TAKEDA, Akiko

    INFORMS Annual Meeting 2008  2008.10 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • 汎化理論に基づくVaR/CVaR最小化ポートフォリオ選択モデル

    武田朗子

    日本オペレーションズ・リサーチ学会平成20年秋季発表会  2008.9 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Improving the Out-of-Sample Performance|rn|via VaR/CVaR Minimization:|rn|A Statistical Learning Approach to Portfolio Selection

    武田朗子

    日本金融・証券計量・工学学会2008年度夏季大会  2008.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Improving the Out-of-Sample Performance via VaR/CVaR Minimization: A Statistical Learning Approach to Portfolio Selection

    TAKEDA, Akiko

    The 4th Sino-Japanese Optimization Meeting  2008.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Portfolio Learning via VaR/CVaR Minimization

    TAKEDA, Akiko

    New Directions in Quantitative Finance  2008.5 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Portfolio Learning via VaR/CVaR Minimization

    武田朗子

    研究集会「最適化:モデリングとアルゴリズム」  2008.3 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • A Conservative Approximation Approach to the Value-at-risk Minimization

    TAKANO, Yuichi

    INFORMS Annual Meeting 2007  2007.11 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • A Conservative Approximation Approach to a Chance-Constrained Convex Program with Application to the Value-at-Risk Minimization

    TAKANO, Yuichi

    International Conference on Continuous Optimization (ICCOPT II & MOPTA-07)  2007.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Conditional Minimum Volume Ellipsoid and Its Computation

    TAKEDA, Akiko

    Workshop on Advances in Optimization  2007.4 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • 新聞売り子問題に対するCVaR最小化

    高野祐一

    科研費シンポジウム「金融リスク管理のための新ITモデルの研究と開発」  2006.11 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Conditional Minimum Volume Ellipsoid and Its Application to Multiclass Classification

    TAKEDA, Akiko

    19th International Symposium on Mathematical Programming  2006.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Conditional Value-at-Risk Minimization for Newsvendor Problem

    TAKANO, Yuichi

    International Conference on Financial Engineering  2006.3 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • 条件付最小楕円と多クラス判別への応用

    Gotoh, J, Takeda, A

    日本オペレーションズ・リサーチ学会2006年春季発表会アブストラクト集,日本オペレーションズ・リサーチ学会  2006.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • The Downside Risk-Averse News-Vendor Minimizing Conditional Value-at-Risk

    TAKANO, Yuichi

    The 3rd Sino-Japanese Optimization Meeting  2005.11 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • CVaR最小化とその応用

    後藤順哉

    第17回RAMPシンポジウム論文集,日本オペレーションズ・リサーチ学会  2005.10 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Conditional Geometric Scoreに基づく線形判別モデル

    Gotoh J, Takeda, A

    日本オペレーションズ・リサーチ学会2005年春季発表大会アブストラクト集,日本オペレーションズ・リサーチ学会  2005.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • A Classification Model Based on Conditional Geometric Score

    TAKEDA, Akiko

    The 6th Conference on Optimization: Techniques and Applications  2004.12 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Minimal Ellipsoid Circumscribing a Polytope Defined by a System of Linear Inequalities

    後藤順哉, 今野浩

    統計数理研究所共同研究リポート 最適化:モデリングとアルゴリズム,統計数理研究所  2004.3 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Minimal Ellipsoid Circumscribing a Polytope Defined by a System of Inequalities

    KONNO, Hiroshi

    18th International Symposium on Mathematical Programming  2003.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Minimal Ellipsoid Circumscribing a Polytope Defined by a System of Linear Inequalities

    KONNO, Hiroshi

    Optimization: Modeling and Algorithm  2003.3 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Global Optimization Method for Solving the Minimum Maximal Flow Problem

    Gotoh, J, Thoai,N.V, Yamamoto, Y

    5th International Conference on Optimization : Techniques and Applications/ICOTA  2001.12 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Solving Semi-Definite Programming Problems for Bounding Option Price by a Cutting Plane Algorithm

    KONNO, Hiroshi

    INFORMS Annual Meeting 2001  2001.11 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Failure discrimination and rating by semi-definite programming

    KONNO, Hiroshi

    17th International Symposium on Mathematical Programming  2000.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • A Cutting Plane Algorithm for Semi-Definite Programming Problem with Applications to Failure Discrimination and Cancer Diagnosis

    KONNO, Hiroshi

    RIMS研究集会「最適化の数理科学」  2000.7 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Maximizing a Ratio of Two Convex Functions over a Polytope

    KONNO, Hiroshi

    INFORMS-KORMS Joint Meeting  2000.6 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Solving the Maximal Predictability Portfolio Problem

    後藤順哉, 今野浩

    JAFEE 2000 夏季大会予稿集,日本金融・証券計量・工学学会  2000.6 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Maximization of the Ratio of Two Convex Quadratic Functions over a Polytope

    Gotoh,J, Konno,H

    CD Proceedings/INFORMS-KORMS Seoul 2000 Conference  2000.6 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • Maximization of the Ratio of Two Convex Quadratic Functions over a Polytope

    後藤順哉, 今野浩

    1999年秋期研究発表会アブストラクト集,日本オペレーションズ・リサーチ学会  1999.9 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  • MeanRiskSkewnessモデルとStochasticDominanceの関係について

    今野浩

    日本金融・証券計量・工学学会(JAFEE)1998 夏季大会  1998.7 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Mean-Risk-Skewness モデルと Stochastic Dominance の関係について

    後藤順哉

    JAFEE 1998 夏季大会予稿集,日本金融・証券計量・工学学会  1998.7 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

▼display all

Awards

  • 中央大学学術研究奨励賞

    2023.3   中央大学  

  • 2022年度論文賞応用部門

    2022.9   The Japan Society for Industrial and Applied Mathematics  

  • 中央大学学術研究奨励賞

    2018.3   Chuo University  

    Gotoh, Jun-ya

  • The 7th Research Award by the OR Society of Japan

    2017.9   Operations Research Society of Japan  

  • The 2nd Best Paper of the Year among Young Researchers by the OR Society of Japan

    2007.3   the Operations Research Society of Japan  

Research Projects

  • Construction of risk management system to support renewable energy P2P transactions

    Grant number:20H00285  2020.4 - 2025.3

    JSPS (Japan Society for the Promotion of Science)  Grants-in-Aid for Scientific Research  基盤研究(A)  University of Tsukuba

    Yuji Yamada

      More details

    Grant type:Competitive

    Grant amount: \44720000 ( Direct Cost: \34400000 、 Indirect Cost: \10320000 )

    researchmap

  • Constructions of demand-prediction based strategy and real-time experimental system to accelerate electricity market

    Grant number:16H01833  2016.4 - 2020.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)  University of Tsukuba

    Yamada Yuji

      More details

    Grant amount: \28730000 ( Direct Cost: \22100000 、 Indirect Cost: \6630000 )

    This research is composed of theory, simulations, and experiments related to electricity market trading after liberalization. In theory, we have constructed an optimization method for forecasting electricity market prices and demands, radiation derivatives for solar power generation industries, procurement cost hedging strategies, and supply and demand function estimations. In the simulation, the effect of introducing electricity futures market is investigated based on the agent-based simulation environment, where forecast based trading strategies for power generation and retail companies are implemented. Furthermore, by constructing an experimental environment that simulates voltage and frequency controls when a general power transmission and distribution company eliminates supply and demand imbalances. Based on the reinforcement learning method, it is shown that the frequency control performance may be improved.

    researchmap

  • 機械学習システムの社会実装に向けた次世代最適化技法の研究

    2019.4 -  

    基盤研究(A) 

    水野 眞治

      More details

    Grant type:Competitive

    researchmap

  • 機械学習システムの社会実装に向けた次世代最適化技法の研究

    2019.4 -  

    基盤研究(A) 

    水野 眞治

      More details

    Grant type:Competitive

    researchmap

  • ロバストなデータ解析のための最適化モデリングの深化

    2019.4 -  

    JSPS (Japan Society for the Promotion of Science)  基盤研究(B) 

    Jun-ya GOTOH, Yuichi TAKANO, sity of Tsukub

      More details

    Grant type:Competitive

    経営科学におけるデータ解析に基づく意思決定(ビジネスアナリティクス)において、その技術のロジックを人間が解釈し易いように、手法の再整備を目指す。より具体的には、現実社会で見られるデータが持つ、扱いづらい性質のいくつかに注目し、研究代表者らが最近提示した非凸最適化のモデリング技法を用い、なるべく統合的な形でデータ解析手法を提示していく。

    researchmap

  • データ駆動型最適化モデルに対する統合的アプローチの探求

    2015.4 - 2019.3

    JSPS (Japan Society for the Promotion of Science)  基盤研究(C) 

    Jun-ya GOTOH

      More details

    Grant type:Competitive

    researchmap

  • 新時代の最適化モデルに基づく意思決定支援プラットフォームの研究と開発

    2014.4 - 2019.3

    文部科学省  科学研究費補助金(日本学術振興会・文部科学省)-基盤研究(A) 

    水野眞治

      More details

    Grant type:Competitive

    researchmap

  • 市場リスクとエネルギーポートフォリオの統合マネジメントシステムの構築

    2013.4 - 2017.3

    文部科学省  科学研究費補助金(日本学術振興会・文部科学省)-基盤研究(B) 

    山田雄二

      More details

    Grant type:Competitive

    researchmap

  • 資産運用手法と信用リスク計量手法の研究:数理計画法によるアプローチ

    Grant number:21310096  2009 - 2011

    日本学術振興会  科学研究費助成事業  基盤研究(B)  中央大学

    今野 浩, 後藤 順哉

      More details

    Grant amount: \12870000 ( Direct Cost: \9900000 、 Indirect Cost: \2970000 )

    産運用研究に関しては、2006年以来取り組んできた、「決定係数最大化ポートフォリオ」構築問題に、動的ファクター選択方法を適用すると、従来の静的ファクター選択方法より遥かに良いパフォーマンスが実現されることを示した。また決定係数の定義の中の「分散」を、「絶対偏差」に置き換えることによって、従来より大型のモデルが解けること、そして事後パフォーマンスが大幅に改善されることを示した。
    資産運用理論に関してはこのほかに、1991年に提案した「平均・絶対偏差モデル」の理論的・実用的重要性に関するサーベイ論文が、「Stochastic Programming : The States of the Art」(Springer, 2010)に掲載された。
    信用リスクの研究に関しては、大型の半正定値計画法に利用した倒産確率推計法を開発し、その有効性を実証した。また超楕円曲面によって企業を分類する手法を開発し、この方法を用いると、企業の財務データのみを用いて、極めて短時間で有力な格付け機関が行った格付けと類似の格付けを行うことができることを示した。
    本年度のもう1つの大きな収穫は、決定係数最大化ポートフォリオ構築や、企業の格付けに必要となる「ファクター選択問題」に関して、"一定数のファクターの中で、データとの当てはまりが最も良いものを求める問題"を、ほぼ完璧な形で解決したことがあげられる。古くから統計学上の難問と考えられてきたこの問題を、残差絶対偏差差和最小化問題として定式化した上で、0-1整数計画法を用いて解くことによって、最良のファクター集合を短時間で選択出来ることが示された。またその後に開発した、「多段階選択法」を用いることによって、より大規模な問題が解けることを実証した。

    researchmap

  • The development of online solver having functions of automatic parameter settings for optimization problems

    Grant number:20510143  2008 - 2010

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)  Chuo University

    FUJISAWA Katsuki, GOTOH Junya, NONOBE Koji, UMETANI Syunji

      More details

    Grant amount: \4550000 ( Direct Cost: \3500000 、 Indirect Cost: \1050000 )

    We have developed the online solver systems having functions of automatic parameter settings for some major optimization problems (semidefinite program, shortest path problem and mixed integer program). The online solvers are now available from some websites. We have also developed high performance optimization solvers for semidefinite program and shortest path problem, which can obtain optimal solutions for very large-scale optimization problems which existing optimization solvers cannot solve.

    researchmap

  • Development of theoretical foundation and extension on networks

    Grant number:19510137  2007 - 2009

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)  University of Tsukuba

    SHIGENO Maiko, YAMAMOTO Yoshitsugu, YOSHISE Akiko, HACHIMORI Masahiro, IWATA Satoru

      More details

    Grant amount: \4420000 ( Direct Cost: \3400000 、 Indirect Cost: \1020000 )

    On network theory, this research established fundamental theory to advance growth of field, and expanded models to enlarge its domain to real-world problems more. For both of basic and ecpanded network problems, efficient algorithms were developed. Especially, the following topics were focused : an efficient algorithm for location problem on a network with adjustability, new parameters for fault tolerance communication networks, community extraction approach on hypergraps, and graph orientation.

    researchmap

  • Research on Integrated Financial Risk Management Technologies : Integration of Market Risk and Credit Risk

    Grant number:18310109  2006 - 2008

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)  Chuo University

    KONNO Hiroshi, FUJISAWA Katsuki

      More details

    Grant amount: \11940000 ( Direct Cost: \10200000 、 Indirect Cost: \1740000 )

    researchmap

  • 半正定値計画によるクラスタリング問題の効率的解法と金融リスク分析への応用

    Grant number:14780343  2002 - 2004

    日本学術振興会  科学研究費助成事業  若手研究(B)  筑波大学

    後藤 順哉

      More details

    Grant amount: \3800000 ( Direct Cost: \3800000 )

    本年度は、クラスタリングの中でも2クラスの線形判別問題に対して、金融リスク制御の分野で好ましい性質を持つことが知られているCVaRを誤判別リスク尺度として用いた新しいモデルの提案・分析を行い、論文にまとめるとともに、最適化に関する国際会議「国際最適化会議:理論とアルゴリズム」(ICOTA6、於:オーストラリア)にて研究成果の報告を行った。
    具体的には、2値のラベルを持つIR^n上のデータ集合を用いて、未知データのラベルをより良く判別する超平面を求める。その際、所与のデータと超平面との幾何的距離によって、誤分類の程度を数値化し、その数値の上側(1-β)×100%の平均値がなるべく小さくなるように超平面を決定するというモデルである(ただし、β∈(0,1))。このモデルに対し、Rockafellar-Uryasev(2002)の結果を利用し、等価な非凸型計画問題を導いた。この非凸型問題に対して、その非凸性の根源となっている1本の2ノルム一定の制約条件が本質的に非凸である場合とそうでない場合があることを指摘し、その性質を利用した求解の枠組みを提示した。その中ではまず非凸性が本質的でない場合には等価な凸計画問題を解くことで解が求まり、そうでない場合には反復的に線形計画問題を解くことで局所最適解を求めることが出来ることを示した。また、本研究で提案した定式化が、あるパラメータ設定の下でハード・マージンSVCやν-SVCといった、いわゆるSVCと呼ばれる判別分析手法に一致することを示し、その一般的な解釈を与えた。さらに、乳癌などの実データに対して、計算実験を行い非凸性が本質となる場合において、高い予測性能を示す結果が得られた。本報告については2005年5月に発行される国際学術雑誌Pacific Journal of Optimizationに掲載が決定された。

    researchmap

  • Optimization of Systems having Uncontrollable Subsystems

    Grant number:14380188  2002 - 2004

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)  University of Tsukuba

    YAMAMOTO Yoshitsugu, YOSHISE Akiko, SATO-ILIC Mika, SHIGENO Maiko, GOTOH Junya, HACHIMORI Masahiro

      More details

    Grant amount: \5900000 ( Direct Cost: \5900000 )

    A conventional paradigm common to mathematical programming or optimization could be referred to as "controllability." Namely, it is taken for granted that we can freely control the variables of the system as we choose. What has been done sp far in this field is to optimize an objective function under this controllability assumption. The difficulty of putting together the different and controversial objectives of the system into a single objective function has been recognized and hence drove multi-objective optimization as well as multi-level optimization. However, the uncontrollability of variables has not been fully considered yet.
    Take a society as the whole system and each individual with his own preference function as a sub-system, the model we consider here leads to the social welfare function and social choice function concerning the democratic decision of society. We have shown, like the conventional impossibility theorem, negative conclusions in the society of mutual evaluation, however some positive conclusion about the strategy proofness. Concerning the problem of how much cost each stakeholder should pay we have given some results about the non-emptyness of core.
    We take a network as the whole system, which is divided into several sub-networks, and arc flows as variables to control, and considered the design problem of network by means of worst case analysis. The problem is formulated as an optimization problem over a non-convex set, for which we have proposed an algorithm. The complementarity constraint emerges as this kind of optimization problems, and we also investigate the interior point method for the problem. If the uncontrollability comes from the probabilistic nature of the system, stochastic programming that emerges as credit risk problem, portfolio selection problems comes in. Fuzzy parameters will bring fuzzy optimization.
    With the above viewpoint, encouraging self-discipline of members we have carried out collaboration for three years. A good many papers has been published with the support of this fellowship.

    researchmap

  • Portfolio Models for the Next Generation Fund Management

    Grant number:12480105  2000 - 2002

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B) 

    KONNO Hiroshi, WATANABE Norio, KAMAKURA Toshinari, UNO Takeaki, GOTOH Junya

      More details

    Grant amount: \14100000 ( Direct Cost: \14100000 )

    We conducted research on:
    (1) Algorithms for solving a minimal concave cost rebalancing problem.
    (2) Optimization of a long-short portfolio management.
    (3) Portfolio optimization using lower partial risk measures.
    These problems are formulated as nonconvex optimization problems and we demoostrated that these problems can be solved in an efficient manner by global optimization methodologies We believe that these accomplishments have much to do with portfolio optimization studies in the years to come.

    researchmap

  • Quantitative Evaluation of Financial Risk

    Grant number:11558046  1999 - 2001

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B) 

    KONNO Hiroshi, WATANABE Norio, KAMAKURA Toshinari, UNO Takeaki, GOTOH Junya

      More details

    Grant amount: \13100000 ( Direct Cost: \13100000 )

    1. Failure Discriminant Analysis
    2. Estimation of Failure Probability
    3. Bounding Option Price
    4. Maximal Predictability Portfolio
    5. Pricing Derivatives by Simulation
    6. Global Optimization Methods for Financial Optimization
    7. Business Method Patent for Financial Engineering
    8. Algorithm for Semi-Definite Programming Arising in Financial Optimization

    researchmap

▼display all

Other

  • 「システム構築のための最適化講座-ソルバーを用いた実践力養成編-」オーガナイザ兼講師

    2021.3    

     More details

    一般社団法人システムイノベーションセンター(SIC)が主催した上記セミナーでオーガナイザ兼講師の役割を担った

    researchmap

  • 「ExcelソルバーではじめるOR」オーガナイザ兼講師

    2020.11    

     More details

    日本オペレーションズ・リサーチ学会が主催する上記セミナー(2020年度第2回)にてオーガナイザと講師の役割を担った
    https://www.orsj.or.jp/activity/seminar2020.html

    researchmap

Allotted class

  • 2024   Internship   Department

  • 2024   Exercise in Basics of Data Science   Department

  • 2024   Introduction to Data Science   Department

  • 2024   Exercise in Data Science   Department

  • 2024   Graduation Thesis Ⅰ   Department

  • 2024   Graduation Thesis Ⅱ   Department

  • 2024   Optimization Techniques   Department

  • 2024   Exercise in Operations Research   Department

  • 2024   Operations Research 1   Department

  • 2024   Operations Research 2   Department

  • 2024   Operations Research   Graduate school

  • 2024   Rudimentary Mathematics for Data Science 1   Graduate school

  • 2024   Doctoral Research Ⅰ   Graduate school

  • 2024   Doctoral Research Ⅱ   Graduate school

  • 2024   Doctoral Research Ⅲ   Graduate school

  • 2024   Doctoral Research Ⅳ   Graduate school

  • 2024   Doctoral Research Ⅴ   Graduate school

  • 2024   Doctoral Research Ⅵ   Graduate school

  • 2024   Special lecture on Data Science   Graduate school

  • 2024   Master's Research Ⅰ   Graduate school

  • 2024   Master's Research Ⅲ   Graduate school

  • 2024   Master's Research Ⅱ   Graduate school

  • 2024   Master's Research Ⅳ   Graduate school

▼display all